首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that heart rate, oxygen uptake and body temperature during exercise in water are affected by water temperature, buoyancy, hydrostatic and so on. It has been reported that the central blood volume during immersion was affected by the increased external hydrostatic pressure and cold-induced peripheral vasoconstriction, and intrathoratic blood volume should be greater during cold than warm water immersion (Epstein, 1992). The purpose of this presentation study was to make clear heart rate, blood pressure, oxygen uptake and cardiac autonomic nervous system modulation during supine floating at water temperatures of 25, 35 and 41 degrees C.  相似文献   

2.
It is presently unclear how the fast and slow components of pulmonary oxygen uptake (VO(2)) kinetics would be altered by body posture during heavy exercise [i.e., above the lactate threshold (LT)]. Nine subjects performed transitions from unloaded cycling to work rates representing moderate (below the estimated LT) and heavy exercise (VO(2) equal to 50% of the difference between LT and peak VO(2)) under conditions of upright and supine positions. During moderate exercise, the steady-state increase in VO(2) was similar in the two positions, but VO(2) kinetics were slower in the supine position. During heavy exercise, the rate of adjustment of VO(2) to the 6-min value was also slower in the supine position but was characterized by a significant reduction in the amplitude of the fast component of VO(2), without a significant slowing of the phase 2 time constant. However, the amplitude of the slow component was significantly increased, such that the end-exercise VO(2) was the same in the two positions. The changes in VO(2) kinetics for the supine vs. upright position were paralleled by a blunted response of heart rate at 2 min into exercise during supine compared with upright heavy exercise. Thus the supine position was associated with not only a greater amplitude of the slow component for VO(2) but also, concomitantly, with a reduced amplitude of the fast component; this latter effect may be due, at least in part, to an attenuated early rise in heart rate in the supine position.  相似文献   

3.
To determine the effect of posture on maximal O2 uptake (VO2 max) and other cardiorespiratory adaptations to exercise training, 16 male subjects were trained using high-intensity interval and prolonged continuous cycling in either the supine or upright posture 40 min/day 4 days/wk for 8 wk and 7 male subjects served as non-training controls. VO2 max measured during upright cycling and supine cycling, respectively, increased significantly (P less than 0.05) by 16.1 +/- 3.4 and 22.9 +/- 3.4% in the supine training group (STG) and by 14.6 +/- 2.0 and 6.0 +/- 2.0% in the upright training group (UTG). The increase in VO2 max measured during supine cycling was significantly greater (P less than 0.05) in the STG than in the UTG. The increase in VO2 max in the UTG was significantly greater (P less than 0.05) when measured during upright exercise than during supine exercise. However, there was no significant difference in posture-specific VO2 max adaptations in the STG. A postural specificity was also evident in other maximal cardiorespiratory variables (ventilation, CO2 production, and respiratory exchange ratio). In the UTG, maximal heart rate decreased significantly (P less than 0.05) only during supine cycling; there was no significant difference in maximal heart rate after training in the STG. We conclude that posture affects maximal cardiorespiratory adaptations to cycle training. Additionally, supine training is more effective than upright training in increasing maximal cardiorespiratory responses measured during supine exercise, and the effects of supine training generalize to the upright posture to a greater extent than the effects of upright training generalize to the supine posture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The dynamics of ventilation (VE), oxygen uptake (VO2), carbon dioxide output (VCO2), and heart rate (fc) were studied in 12 healthy young men during upright and supine exercise. Responses to maximal and to two different types of submaximal exercise tests were contrasted. During incremental exercise to exhaustion, the maximal work rate, VO2max, VEmax, fc,max, and ventilatory threshold were all significantly reduced in supine compared to upright exercise (P less than 0.01-0.001). Following step increases or decreases in work rate between 25 W and 105 W, both VO2 and VCO2 responded more slowly in supine than upright exercise. Dynamics were also studied in two different pseudorandom binary-sequence (PRBS) exercise tests, with the work rate varying between 25 W and 105 W with either 5-s or 30-s durations of each PRBS unit. In both of these tests, there were no differences caused by body position in the amplitude or phase shifts obtained from Fourier analysis for any observed variable. These data show that the body position alters the dynamic response to the more traditional step increase in work rate, but not during PRBS exercise. It is speculated that the elevation of cardiac output observed with supine exercise in combination with the continuously varying work-rate pattern of the PRBS exercise allowed adequate, perhaps near steady-state, perfusion of the working muscles in these tests, whereas at the onset of a step increase in work rate, greater demands were placed on the mechanisms of blood flow redistribution.  相似文献   

5.
To investigate the effect of different levels of central blood volume on cardiac performance during exercise, M-mode echocardiography was utilized to determine left ventricular size and performance during cycling exercise in the upright posture (UP), supine posture (SP), and head-out water immersion (WI). At submaximal work loads requiring a mean O2 consumption (Vo2) of 1.2 1/min and 1.5 1/min, mean left ventricular end-diastolic and end-systolic dimensions were significantly greater (P less than 0.05) with WI than UP. In the SP during exercise, left ventricular dimensions were intermediate between UP and WI. Heart rate did not differ significantly among the three conditions at rest and at submaximal exercise up to a mean Vo2 of 1.8 1/min. However, at a mean Vo2 of 2.4 1/min, heart rate in the UP was significantly greater than WI (P less than 0.01) and the SP (P less than 0.05). Maximal Vo2 did not differ statistically in the three conditions. These data indicate that a change in central blood volume results in alterations in left ventricular end-diastolic and end-systolic dimensions during moderate levels of exercise and a change in heart rate at heavy levels of exercise.  相似文献   

6.
To investigate the effect of local dehydration on heart rate and blood pressure during static exercise, six healthy male subjects performed exercise of the calf muscles with different extracellular volumes of the working muscles. Exercise consisted of 5 min of static calf muscle contractions at about 10% of maximal voluntary contraction. The body position during exercise was identical in all tests, i.e. supine with the knee joint 90 degrees flexed. During a 25-min pre-exercise period three different protocols were employed to manipulate the calf volume. In test A the subjects rested in the exercise position; in test B the body position was the same as in A but calf volumes were increased by venous congestion [cuffs inflated to 10.67 kPa (80 mmHg)]; in test C the calf volumes were decreased by lifting the calves about 40 cm above heart level with the subjects supine. To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mmHg 5 min before the onset of exercise. This occlusion was maintained for 1 min after the termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in tests B and C until the cuffs were deflated, indicating that only calf muscles contributed to the neurogenic peripheral drive. It is concluded that extracellular muscle volume plays a significant role in adjusting heart rate and blood pressure during static exercise.  相似文献   

7.
Vagal-cardiac baroreflex functions in young healthy humans (n=6) were investigated in four different conditions; supine rest, seated rest, supine and seated exercise (50 watts) before and after 20-day horizontal bed rest. By selectively stimulating carotid baroreceptors using a neck pressure and suction technique, the primary finding was that the baroreflex sensitivity tuation at which we observed a tendency for an attenuation (0.05相似文献   

8.
The objective of this study was to identify whether muscle mechanoreceptor stimulation is capable of modulating sweat rate. Seven healthy subjects performed two 20-min bouts of supine exercise on a tandem cycle ergometer (60 rpm at 65% of maximal heart rate). After one bout, the subject stopped exercising (i.e., no pedaling), whereas, after the other bout, the subject's legs were passively cycled (at 60 rpm) via a second person cycling the tandem ergometer. This allows for mechanical stimulation of muscle with minimal activation of central command. Esophageal temperature (T(es)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure, oxygen consumption, cutaneous vascular conductance (CVC), and sweat rate were not different during the two exercise bouts. Regardless of the mode of exercise recovery, there were no differences in T(es), T(sk), or CVC. In contrast, early in the recovery period, chest and forearm sweat rate were significantly greater in the passive cycling recovery mode relative to the no-pedaling condition (chest: 0.57 +/- 0.13 vs. 0.39 +/- 0.14, forearm: 0.30 +/- 0.05 vs. 0.12 +/- 0.02 mg.cm(-2).min(-1); both P < 0.05). These results suggested that muscle mechanoreceptor stimulation to the previously activated muscle is capable of modulating sweat rate.  相似文献   

9.
Left ventricular hemodynamics during exercise recovery   总被引:1,自引:0,他引:1  
The directional response of human left ventricular stroke volume during exercise recovery is unclear. Stroke volume has been reported to increase and decrease over exercise values during early recovery. The confounding variable may be posture. With the use of pulsed Doppler ultrasound, we tested the hypothesis that there is a significant difference between seated and supine stroke index (SI) during passive recovery from seated ergometer exercise. Thirteen subjects aged 26 +/- 2 yr performed two seated cycle ergometer exercise tests to 70% of predicted maximum heart rate (HR). Recovery was supine on one test and seated on the other. Cardiac index (CI), HR, and SI were calculated during rest, exercise, and 10 min of recovery. At rest, SI and CI were significantly (P less than 0.01) less and HR significantly (P less than 0.01) greater when the subjects were seated than when they were supine. At the last exercise work load, no significant differences were found in any measured variable between tests. During recovery, supine SI was maximal 180 s postexercise (99 +/- 14 ml/m2) and exceeded (P less than 0.01) resting supine (81 +/- 14 ml/m2) and peak exercise (77 +/- 14 ml/m2) SI by 22 and 29%, respectively. Seated SI was constant at peak exercise levels for 2 min. Seated and supine recovery CI never exceeded exercise values. Systolic and diastolic blood pressure recovery curves were similar in the two postures. We conclude that posture significantly affects SI during recovery from submaximal seated exercise. These results have implications for choice of recovery posture after stress testing in cardiac patients where it is desirable to minimize ventricular loading.  相似文献   

10.
Eight healthy and physically well-trained male students exercised on a treadmill for 60 min while being immersed in water to the middle of the chest in a laboratory flowmill. The water velocity was adjusted so that the intensity of exercise correspond to 50% maximal oxygen uptake of each subject, and experiments were performed once at each of three water temperatures: 25, 30, 35°C, following a 30-min control period in air at 25°C, and on a treadmill in air at an ambient temperature of 25°C. Thermal states during rest and exercise were determined by measuring rectal and skin temperatures at various points, and mean skin temperatures were calculated. The intensity of exercise was monitored by measuring oxygen consumption, and heart rate was monitored as an indicator for cardiovascular function. At each water temperature, identical oxygen consumption levels were attained during exercise, indicating that no extra heat was produced by shivering at the lowest water temperature. The slight rise in rectal temperature during exercise was not influenced by the water temperature. The temperatures of skin exposed to air rose slightly during exercise at 25°C and 30°C water temperature and markedly at 35°C. The loss of body mass increased with water temperature indicating that both skin blood flow and sweating during exercise increased with the rise in water temperature. The rise in body temperature provided the thermoregulatory drive for the loss of the heat generated during exercise. Heart rate increased most during exercise in water at 35°C, most likely due to enhanced requirements for skin blood flow. Although such requirements were certainly smallest at 25°C water temperature, heart rate at this temperature was slightly higher than at 30°C suggesting reflex activation of sympathetic control by cold signals from the skin. There was a significantly greater increase in mean skin and rectal temperatures in subjects exercising on the treadmill in air, compared to those exercising in water at 25°C. Accepted: 22 May 1998  相似文献   

11.
The purpose of this study was to examine the effects of the increased sympathetic activity elicited by the upright posture on blood flow to exercising human forearm muscles. Six subjects performed light and heavy rhythmic forearm exercise. Trials were conducted with the subjects supine and standing. Forearm blood flow (FBF, plethysmography) and skin blood flow (laser Doppler) were measured during brief pauses in the contractions. Arterial blood pressure and heart rate were also measured. During the first 6 min of light exercise, blood flow was similar in the supine and standing positions (approximately 15 ml.min-1.100 ml-1); from minutes 7 to 20 FBF was approximately 3-7 ml.min-1.100 ml-1 less in the standing position (P less than 0.05). When 5 min of heavy exercise immediately followed the light exercise, FBF was approximately 30-35 ml.min-1.100 ml-1 in the supine position. These values were approximately 8-12 ml.min-1.100 ml-1 greater than those observed in the upright position (P less than 0.05). When light exercise did not precede 8 min of heavy exercise, the blood flow at the end of minute 1 was similar in the supine and standing positions but was approximately 6-9 ml.min-1.100 ml-1 lower in the standing position during minutes 2-8. Heart rate was always approximately 10-20 beats higher in the upright position (P less than 0.05). Forearm skin blood flow and mean arterial pressure were similar in the two positions, indicating that the changes in FBF resulted from differences in the caliber of the resistance vessels in the forearm muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The response of the systemic circulation to acute inhibition of the converting enzyme with 25 mg of oral Captopril (Squibb) was studied in six normal sodium-replete male volunteers at rest and during exercise, together with its effects on exercise capacity for graded uninterrupted exercise. In recumbent subjects at rest Captopril did not affect arterial pressure or heart rate, and plasma renin activity rose 2.5-fold (P less than 0.05). In subjects in the sitting position, at rest and during exercise until exhaustion, Captopril reduced mean brachial intra-arterial pressure by an average of 7 Torr in comparison to placebo (P less than 0.001). Captopril's hypotensive effect was caused by a reduction of systemic vascular resistance (P less than 0.01), without changes of cardiac output (measured by CO2 rebreathing), heart rate, or stroke volume. Plasma renin activity was significantly higher during Captopril (P less than 0.001). Peak oxygen uptake and exercise duration were the same after administration of Captopril or placebo. The data demonstrate that the renin-angiotensin system is not involved in the homeostasis of blood pressure in supine sodium-replete humans, but has a modest role in blood pressure regulation when posture is changed from supine to upright. The orthostatic effect of Captopril is maintained during upright exercise. Furthermore the reduction of systemic vascular resistance by Captopril does not affect peak oxygen uptake.  相似文献   

13.
The purpose of the present study was to determine whether or not the exercise intensity of water-walking for elderly women could be accurately prescribed by heart rate data obtained during treadmill exercise on land. Six healthy female volunteers, with a mean age of 62.2 +/- 4.2 years, took part in this study. Walking on land was performed on a treadmill. Each subject completed three consecutive 4-minute walks at a progressively increasing velocity (40, 60 and 80 m.min-1), with a 1-minute rest after both the first and second walks. The room temperature and relative humidity were 24.5 +/- 0.2 degrees C and 54.8 +/- 4.0%, respectively. Walking in water was performed in a Flowmill, which is a treadmill positioned at the base of a water flume. Each subject completed three consecutive 4-minute walks at a progressively increasing belt and water-flow velocity (20, 30 and 40 m.min-1), with a 1-minute rest after both the first and second walks. The water depth was at the level of the xiphoid process of each subject. The water temperature was 30.7 +/- 0.1 degrees C. The exercise intensity at the highest workrate was equivalent to 44.2 +/- 10.3% of the heart rate reserve (HRR) during water-walking and 38.4 +/- 4.7% of the HRR during land-walking. There was a highly significant linear relationship between heart rate (HR) and oxygen uptake (VO2) during both water-walking and land-walking. The relationship between HR and VO2 in both exercise modes was similar. Thus, the relationship of HR to VO2 derived from a treadmill-graded walking test on land may be used to prescribe exercise intensity for water-walking in thermoneutral water.  相似文献   

14.
Physical effort involves, along with an increase in the plasma concentration of beta-endorphin, profound cardiovascular adaptations. The aim of the present study was to investigate with the use of the variable neck chamber technique, the influence of the endogenous opioids on the carotid baroreflex control of blood pressure and heart rate at rest as well as during exercise. Ten normal volunteers exercised in the supine position up to 33% and 66% of their maximal exercise capacity and received, in a randomized double-blind cross-over protocol, either saline or naloxone (10 mg intravenously, followed by a continuous infusion of 10 mg.h-1). During exercise a progressive attenuation of the carotid baroreceptor reflex control of blood pressure and heart rate was noted. However, neither at rest nor during exercise, did opioid antagonism influence the carotid baroreceptor control of blood pressure and heart rate. Intra-arterial pressure and heart rate also remained unaffected. In contrast, both at rest and during exercise, naloxone administration produced a significant increase in the plasma concentration of cortisol. The latter suggests that in vivo the opioid receptors were effectively antagonized. In conclusion the present study confirms that opioids play only a minor role in cardiovascular homeostasis at rest. In addition, this study demonstrates that they are not involved in the cardiovascular adaptation to exercise, nor in the exercise-related attenuation of the carotid baroreceptor control of pressure and heart rate.  相似文献   

15.
The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (T(core)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure (n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, T(core), and T(sk). Baroreceptor loading and thermal status were similar during trials because MAP (90 +/- 4, 88 +/- 4 mmHg), thoracic impedance (29 +/- 1, 28 +/- 2 Omega), central venous pressure (5 +/- 1, 4 +/- 1 mmHg), T(core) (37.5 +/- 0.1, 37.5 +/- 0.1 degrees C), and T(sk) (34.1 +/- 0.3, 34.2 +/- 0.2 degrees C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 +/- 6% of maximum) and inactive (28 +/- 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 +/- 0.16 mg.cm(-2).min(-1)) compared with inactive (0.34 +/- 0.19 mg.cm(-2).min(-1); P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.  相似文献   

16.
Gravity adds about 40-50 mmHg perfusion pressure to the arterial supply of the quadriceps muscles in the upright posture. This could have important implications in supply of blood flow during exercise. Recently, we have shown that when subjects exercise in the supine posture the rate of increase in VO2 is considerably slower then when cycling exercise takes place in the upright posture. The most probable explanation for this slower adaptation was the altered perfusion gradient. Indeed, when the perfusion gradient from heart to legs was restored by placing the lower part of the body of supine subjects in a negative pressure chamber, the rate of increase in VO2 returned to upright values. The hypothesis advanced from these studies was that skeletal muscle blood flow was reduced at the onset of supine exercise. Exercise in the microgravity environment of space should be similar to that in the supine posture. The only experiments conducted in space to this date that have addressed the question of cardiorespiratory adaptation to changing work rates were performed on the German D2 mission using the methodology proposed by Stegemann and colleagues. To conduct these experiments, it is necessary to utilize sensitive breath-by-breath technology. Recently, NASA and the Russian space programs have commissioned a new mass spectrometer based system as part of the GASMAP project. It was the purpose of this study to evaluate the new mass spectrometer under conditions in which the gravitational effects on the cardiorespiratory response were being challenged.  相似文献   

17.
The purpose of this study was to measure the changes and rates of adaptation of left ventricular volumes at the onset of exercise. Eight asymptomatic subjects, in whom intramyocardial markers had been implanted 3-6 years previously during aortocoronary bypass surgery, exercised in the supine position at a constant workload of 73.6 W for 5 min. Six also exercised first at 16.4 W, and then against a workload which progressively increased by 8.2 W every 15 s. Cardiac volumes were measured by computer assisted analysis of the motion of the implanted markers. In the constant workload test, cardiac output increased rapidly from 5.7 +/- 1 min-1 to 10.3 +/- 1.9 1 min-1 by 2 min and then increased more slowly to 10.8 +/- 2.0 1 min-1 by 5 min. The cardiac output increase was mainly due to an increase in heart rate from 68 +/- 12 beats min-1 to 120 +/- 16 beats min-1 with minimal changes in stroke volume. The time constant for the early increase in cardiac output was 45s and for heart rate, 35s. With progressively increasing workloads, there was an almost linear increase of heart rate and cardiac output, but these increased at a slower rate than during the early phase of the constant load exercise test. In conclusion: rapid changes in cardiac output during supine exercise were produced by changes in heart rate; changes in stroke volume provided minor adjustments to cardiac output; the end-diastolic volume was almost constant.  相似文献   

18.
Long-term head-down-tilt bed rest (HDT) causes cardiovascular deconditioning, attributed to reflex dysfunctions, plasma volume reduction, or cardiac impairments. Our objective with the present study was to evaluate the functional importance and relative contribution of these during rest and exercise in supine and upright postures. We studied six subjects before (baseline), during [days 60 (D60) and 113 (D113)], and after [recovery days 0 (R0), 3 (R3), and 15 (R15)] 120 days of -6 degrees HDT. We determined cardiac output, stroke volume (SV), mean arterial pressure, and heart rate during rest and exercise in supine and upright postures. Cardiac output and SV decreased significantly in all four conditions, but the time courses differed for rest and exercise. Upright resting SV was decreased by 24 +/- 9% at D60 compared with baseline but had recovered already at R3. Supine exercise SV decreased more slowly (by 5 +/- 8% at D60 and by 18 +/- 4% at D113) and recovered more slowly after HDT termination. Steady-state mean arterial pressure showed no changes. Heart rate had increased by 18 +/- 4% at D60 and had recovered partially at R3. Our data indicate that long-term HDT causes both a rapid, preload-dependent reduction in SV, most evident during rest in the upright position, and a more slowly developing cardiac dysfunction, most evident during supine exercise. However, the ability to maintain blood pressure and to perform sustained low levels of dynamic exercise is not influenced by HDT.  相似文献   

19.
The relationship between two abnormalities of exercise physiology in chronic heart failure patients was investigated: chronotropic incompetence and decrease in core temperature. While at rest, 13 heart failure patients had an average sinus heart rate that was significantly higher than seven normals (92 +/- 13 vs. 82 +/- 10 min-1, P less than 0.05). However, during exercise, the trend of increase in sinus heart rate as a function of work load and O2 uptake was significantly greater in normals compared with heart failure (P less than 0.05), and the absolute increase in heart rate at 50 W of cycle ergometry was larger in normals compared with heart failure (38 +/- 17 vs. 22 +/- 13 min-1, P less than 0.05). Differences in core temperature regulation were also observed. In the normals, core temperature increased from 37.13 +/- 0.33 degrees C at rest to 37.37 +/- 0.31 degrees C at 50 W of exercise (P less than 0.01). In the heart failure patients, core temperature decreased from 36.99 +/- 0.33 degrees C at rest to 36.66 +/- 0.39 degrees C at 50 W of exercise (P less than 0.01). As expected, significant differences in hemodynamic and gas exchange variables were observed between the normals and the heart failure patients both at rest and during exercise. A multiple linear regression analysis was performed of heart rate changes as the dependent variable and thermoregulatory and hemodynamic changes as the independent variables to test for their influence on heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In six normal supine subjects epinephrine infusion produced a greater leukocytosis with smaller changes in heart rate and blood pressure than did norepinephrine or isoproterenol. Upright exercise in those subjects produced a greater leukocytosis than supine exercise at the same work load. To determine the lung's participation in these events, indium-labeled neutrophils (PMN) were given to four of the subjects. We found that 20-25% were retained in the first pass through the lung when compared with technetium-labeled erythrocytes. The number of labeled PMN in the lung gradually decreased and the number in the spleen and the liver increased. Exercise and catecholamine infusion caused an acceleration in the release of labeled cells from the lung, an increase in both labeled and unlabeled cells in the peripheral blood, and an increase in the number of labeled cells in the liver and spleen. This suggests that increased perfusion of low-flow areas in the lung may contribute to the increased leukocytosis seen in association with both exercise and catecholamine infusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号