共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastrointestinal neuropeptides have been shown to modulate the circulatory immune system, but their effect on the mucosal immune system is not well defined. We studied the effect of VIP, SOM, S-P and Bomb on thymidine incorporation into human colonic lamina propria lymphocyte (LPL) DNA. Physiologic concentrations of VIP, SOM, S-P and Bomb significantly suppressed thymidine incorporation into Con A-stimulated human LPL. These neuropeptides did not affect DNA synthesis when LPL were induced with phorbol ester (PDB) and calcium ionophore (ionomycin). Our data suggest that a) VIP, SOM, S-P, and Bomb may have a regulatory role in the human mucosal immune system, and b) Bomb should be added to the list of neuropeptides which affect the gut immune system. 相似文献
2.
S Deaglio R Mallone G Baj D Donati G Giraudo F Corno S Bruzzone M Geuna C Ausiello F Malavasi 《FASEB journal》2001,15(3):580-582
CD38, a nonlineage-restricted surface glycoprotein, is an ecto-enzyme (ADP ribosyl cyclase/cADPR hydrolase/EC 3.2.2.6) that regulates cytoplasmic Ca2+ and cell-cell interactions. The molecule also delivers trans-membrane signals, despite a structural ineptitude to the scope. To reconcile these issues in a unitarian model, we compared the effects of CD38 signaling in circulating and residential T lymphocytes, the latter represented by those colonizing the intestinal lamina propria. Results are as follows: 1) LP T cells express an enzymatically active form of CD38, characterized by a modified ratio between cyclase and hydrolase functions; 2) LP T cells do not mobilize Ca2+ upon CD38 ligation, as seen in PB T cells (this condition is due to a lack in activation of PLC- g, constantly observed in PB T lymphocytes); 3) The early steps of CD38 signaling involve activation of lck, syk, and LAT; 4) Late events include synthesis and release of IL-2, IL-4, IL-5, IL-10, IFN-g and GM-CSF; 5) The uniqueness of the CD38 pathway in LP T cells is not caused by impaired interactions with the CD31 ligand. The differences observed concern the signaling machinery that CD38 exploits for its own use and not the interplay with its ligand. 相似文献
3.
Cytoskeletal proteins are major components of the cell backbone and regulate cell shape and function. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS) on the dynamics and organization of the cytoskeletal proteins, actin, vimentin, tubulin and vinculin in human small intestinal lamina propria fibroblasts (HSILPF). A noticeable change in the actin architecture was observed after 30 min incubation with LPS with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 2 h. Reorganization of the vimentin network into vimentin bundling was conspicuous at 2 h. With further increase in the time period of LPS exposure, diffused staining of vimentin along with vimentin bundling was observed. Vinculin plaques distributed in the cell body and cell periphery in the control cells rearrange to cell periphery in LPS-treated cells by 30 min of LPS exposure. However, there was no change in the tubulin architecture in HSILPF in response to LPS. LPS increased the F-actin pool in HSILPF in a concentration-dependent manner with no difference in the level of G-actin. A time-dependent study depicted an increase in the G-actin pool at 10 and 20 min of LPS exposure followed by a decrease at further time intervals. The F-actin pool in LPS-treated cells was lower than the control levels at 10 and 20 min of LPS exposure followed by a sharp increase until 120 min and finally returning to the basal level at 140 and 160 min. Further (35)S-methionine incorporation studies suggested a new pool of actin synthesis, whereas the synthesis of other cytoskeletal filaments was not altered. Cytochalasin B, an actin-disrupting agent, severely affected the LPS induced increased percentage of 'S' phase cells and IL-6 synthesis in HSILPF. We conclude that dynamic and orchestrated organization of the cytoskeletal filaments and actin assembly in response to LPS may be a prime requirement for the LPS induced increase in percentage of 'S' phase cells and IL-6 synthesis 相似文献
4.
Chung CS Wang W Chaudry IH Ayala A 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(5):G812-G818
Recent studies from our laboratory demonstrated that mucosal lymphoid tissue such as Peyer's patch cells and lamina propria (LP) B lymphocytes from mice shows evidence of increased apoptosis after sepsis that is associated with localized inflammation/activation. The mechanism for this is poorly understood. Endotoxin as well as Fas/Fas ligand (FasL) have been shown to augment lymphocyte apoptosis; however, their contribution to the increase of apoptosis in LP B-cells during sepsis is not known. To study this, sepsis was induced by cecal ligation and puncture (CLP) in endotoxin-tolerant C3H/HeJ or FasL-deficient C3H/HeJ-FasL(gld) (FasL(-)) mice and LP lymphocytes were isolated 24 h later. Phenotypic, apoptotic, and functional indexes were assessed. The number of LP B cells decreased markedly in C3H/HeJ mice but not in FasL-deficient animals at 24 h after CLP. This was associated with comparable alteration in apoptosis and Fas antigen expression in the B cells of these mice. Septic LP lymphocytes also showed increased IgA production, which was absent in the FasL-deficient CLP mice. Furthermore, Fas ligand deficiency appeared to improve survival of septic challenge. These data suggest that the increase in B cell apoptosis in septic animals is partially due to a Fas/FasL-mediated process but not endotoxin. 相似文献
5.
S C Liu Q Wang G E Lienhard S R Keller 《The Journal of biological chemistry》1999,274(25):18093-18099
The insulin receptor substrates (IRS) 1 and 2 are required for normal growth and glucose homeostasis in mice. To determine whether IRS-3, a recently cloned member of the IRS family, is also involved in the regulation of these, we have generated mice with a targeted disruption of the IRS-3 gene and characterized them. Compared with wild-type mice, the IRS-3-null mice showed normal body weight throughout development, normal blood glucose levels in the fed and fasted state and following an oral glucose bolus, and normal fed and fasted plasma insulin levels. IRS-3 is most abundant in adipocytes and is tyrosine-phosphorylated in response to insulin in these cells. Therefore, isolated adipocytes were analyzed for changes in insulin effects. Insulin-stimulated glucose transport in the adipocytes from the IRS-3-null mice was the same as in wild-type cells. The extent of tyrosine phosphorylation of IRS-1/2 following insulin stimulation was similar in adipocytes from IRS-3-null and wild-type mice, and the insulin-induced association of tyrosine-phosphorylated IRS-1/2 with phosphatidylinositol 3-kinase and SHP-2 was not detectably increased by IRS-3 deficiency. Thus, IRS-3 was not essential for normal growth, glucose homeostasis, and glucose transport in adipocytes, and in its absence no significant compensatory augmentation of insulin signaling through IRS-1/2 was evident. 相似文献
6.
T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. 总被引:9,自引:0,他引:9
H L Schieferdecker R Ullrich H Hirseland M Zeitz 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(8):2816-2822
Recently, T cell subpopulations presumably representing memory T lymphocytes have been described in vitro. Intestinal lamina propria T cells (LP-T) have characteristics resembling those of memory cells. We therefore investigated the expression of surface Ag associated with memory phenotype in vitro on lamina propria lymphocytes (LPL) and PBL and on the T cell subpopulations defined by the bright expression of CD45R0 by flow cytometric analysis of isolated cell populations. LPL had significantly increased percentages of CD45R0 and CD58 positive cells compared with PBL. Whereas PBL showed bimodal expression profiles of CD45R0, CD58, and CD2, the vast majority of LPL was bright for these Ag. Expression of CD45RA was significantly reduced in both frequency and intensity in LPL, and LPL had significantly reduced percentages of CD11a/CD18 and CD29 positive cells compared with PBL. The CD45R0 bright T cell subpopulations of both PBL and LPL were characterized by a lack of CD45RA. CD45R0 bright T cells from the peripheral blood (PB-T) were predominantly bright for CD2, CD58, CD29, and CD11a/CD18 whereas CD45R0 dim PB-T had bimodal expression profiles and CD45R0 negative PB-T were dim or even negative for these Ag. CD45R0 bright LP-T were also bright for CD2 and CD58 but had significantly reduced surface densities of CD11a/CD18 and CD29 compared with CD45R0 bright PB-T. The surface density of CD29 on CD45R0 bright LP-T corresponded to that of CD45R0 negative PB-T, and a significant proportion of CD45R0 bright LP-T was even negative for CD11a/CD18 and CD29. Additionally, CD45R0 bright LP-T in contrast to PB-T were characterized by a lack of 1-selectin and the expression of CDw49a and the mucosa-specific T cell Ag HML-1 on high percentages of cells. Our results show that the phenotype of CD45R0 bright T cells from the lamina propria clearly deviates from that of memory T cells in vitro and of CD45R0 bright T cells in the peripheral blood. We conclude that memory T cell populations in vivo undergo specific differentiation depending on their tissue localization, leading to unique phenotypic and presumably functional features. 相似文献
7.
J L Prehn C J Landers S R Targan 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(8):4277-4283
The role of TNF-alpha in the mucosal inflammation of Crohn's disease has been demonstrated by the prolonged clinical responses and/or remissions among patients receiving i.v. infusion of anti-TNF-alpha. A correlation between TNF-alpha and elevated IFN-gamma production is suggested by the reduction in the number of IFN-gamma producing lamina propria mononuclear cells (LPMC) found in colonic biopsies from anti-TNF-alpha-treated patients. The aim of this study was to define the mechanism of TNF-alpha-augmented mucosal T cell IFN-gamma production. In this paper we present evidence that cultured LPMC secrete a factor which acts on preactivated T cells in concert with TNF-alpha to augment IFN-gamma production. This activity is independent of IL-12 and IL-18, the well-documented potentiators of IFN-gamma expression, and is not produced by PBMC. Peripheral blood PHA-activated T cells incubated in supernatants from LPMC became responsive to TNF-alpha by increasing IFN-gamma output upon stimulation. These results are consistent with a model in which LPMC, but not PBMC, release an unidentified substance when cultured in vitro with low dose IL-2. This substance can act on preactivated peripheral T cells, as well as on lamina propria T cells, conditioning them to respond to TNF-alpha by increased IFN-gamma secretion upon stimulation. Expression of this factor in the gut mucosa could contribute to up-regulation of the Th1 response in the presence of TNF-alpha, and could be important for mucosal immunoregulation. 相似文献
8.
Itk, a member of the Tec family of tyrosine kinases, is critical for TCR signaling, leading to the activation of phospholipase C gamma1. Early biochemical studies performed in tumor cell lines also implicated Itk in CD28 signaling. These data were complemented by functional studies on primary Itk-/- T cells that suggested a negative role for Itk in CD28 signaling. In this report, we describe a thorough analysis of CD28-mediated responses in T cells lacking Itk. Using purified naive CD4+ T cells from Itk-/- mice, we examine a range of responses dependent on CD28 costimulation. We also analyze Akt and glycogen synthase kinase-3beta phosphorylation in response to stimulation of CD28 alone. Overall, these experiments demonstrate that CD28 signaling, as well as CD28-mediated costimulation of TCR signaling, function efficiently in the absence of Itk. These findings indicate that Itk is not essential for CD28 signaling in primary naive CD4+ T cells. 相似文献
9.
Jianxin Dai Zhiguo Cao Yanshen Kang Guanghui Ji Huajing Wang Hao Wang Yajun Guo 《Biochemical and biophysical research communications》2009,380(3):715-1733
Osteopontin (OPN) plays an important role in regulating lymphocyte adhesion and cytokine production associated with inflammatory processes and autoimmune diseases. Here we developed and characterized a monoclonal antibody F8E11 specific for human OPN (hOPN). F8E11 could inhibit OPN-induced lymphocyte activation and migration. Epitope mapping showed that F8E11 could specifically recognize the peptide QLYxxYP. In addition, a synthesized mimetic peptide F8P (EEKQLYNKYPDA) could block the binding of F8E11 to hOPN and significantly inhibit the hOPN-induced lymphocyte migration. Moreover, mutations on the QLYxxYP motif of hOPN also markedly diminished its activity for lymphocyte activation and migration. The functioning assay indicated that this novel epitope is critically involved in the lymphocyte migration through activating MAPK/ERK/AP-1 pathway, which can be inhibited by the motif QLYxxYP blocking antibody, F8E11. These results suggest that this novel epitope of OPN may provide a potential therapeutic target for the treatment of T cell mediated-immune diseases. 相似文献
10.
Intestinal lamina propria retaining CD4+CD25+ regulatory T cells is a suppressive site of intestinal inflammation 总被引:2,自引:0,他引:2
Makita S Kanai T Nemoto Y Totsuka T Okamoto R Tsuchiya K Yamamoto M Kiyono H Watanabe M 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(8):4937-4946
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only does active suppression by regulatory T (T(REG)) cells play an important role in the normal intestinal homeostasis, but also that its dysregulation of immune response leads to the development of inflammatory bowel disease. In this study, we demonstrate that murine CD4(+)CD25(+) T cells residing in the intestinal lamina propria (LP) constitutively express CTLA-4, glucocorticoid-induced TNFR, and Foxp3 and suppress proliferation of responder CD4(+) T cells in vitro. Furthermore, cotransfer of intestinal LP CD4(+)CD25(+) T cells prevents the development of chronic colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells into SCID mice. When lymphotoxin (LT)alpha-deficient intercrossed Rag2 double knockout mice (LTalpha(-/-) x Rag2(-/-)), which lack mesenteric lymph nodes and Peyer's patches, are transferred with CD4(+)CD45RB(high) T cells, they develop severe wasting disease and chronic colitis despite the delayed kinetics as compared with the control LTalpha(+/+) x Rag2(-/-) mice transferred with CD4(+)CD45RB(high) T cells. Of note, when a mixture of splenic CD4(+)CD25(+) T(REG) cells and CD4(+)CD45RB(high) T cells are transferred into LTalpha(-/-) x Rag2(-/-) recipients, CD4(+)CD25(+) T(REG) cells migrate into the colon and prevent the development of colitis in LTalpha(-/-) x Rag2(-/-) recipients as well as in the control LTalpha(+/+) x Rag2(-/-) recipients. These results suggest that the intestinal LP harboring CD4(+)CD25(+) T(REG) cells contributes to the intestinal immune suppression. 相似文献
11.
12.
Although the long isoform of cellular FLIP (c-FLIP(L)) has been implicated in TCR-mediated signaling, its role in T cell proliferation remains controversial. Some studies have demonstrated that overexpression of c-FLIP(L) promotes T cell proliferation and NF-kappaB activation, whereas others have reported that c-FLIP(L) overexpression has no effect or even inhibits T cell proliferation. To establish the role of c-FLIP(L) in T lymphocyte proliferation, we have generated a conditional knockout mouse strain specifically lacking c-FLIP(L) in T lymphocytes. c-FLIP(L)(-/-) mice exhibit severely impaired effector T cell development after Listeria monocytogenes infection in vivo and c-FLIP(L)-deficient T cells display defective TCR-mediated proliferation in vitro. However, c-FLIP(L)(-/-) T cells exhibit normal NF-kappaB activity upon TCR stimulation. These results demonstrate that c-FLIP(L) is essential for T lymphocyte proliferation through an NF-kappaB-independent pathway. 相似文献
13.
14.
Copper (Cu) is essential for plant growth but toxic in excess. Specific molecular mechanisms maintain Cu homeostasis to facilitate its use and avoid the toxicity. Cu chaperones, proteins containing a Cu-binding domain(s), are thought to assist Cu intracellular homeostasis by their Cu-chelating ability. In Arabidopsis (Arabidopsis thaliana), two Cu chaperones, Antioxidant Protein1 (ATX1) and ATX1-Like Copper Chaperone (CCH), share high sequence homology. Previously, their Cu-binding capabilities were demonstrated and interacting molecules were identified. To understand the physiological functions of these two chaperones, we characterized the phenotype of atx1 and cch mutants and the cchatx1 double mutant in Arabidopsis. The shoot and root growth of atx1 and cchatx1 but not cch was specifically hypersensitive to excess Cu but not excess iron, zinc, or cadmium. The activities of antioxidant enzymes in atx1 and cchatx1 were markedly regulated in response to excess Cu, which confirms the phenotype of Cu hypersensitivity. Interestingly, atx1 and cchatx1 were sensitive to Cu deficiency. Overexpression of ATX1 not only enhanced Cu tolerance and accumulation in excess Cu conditions but also tolerance to Cu deficiency. In addition, the Cu-binding motif MXCXXC of ATX1 was required for these physiological functions. ATX1 was previously proposed to be involved in Cu homeostasis by its Cu-binding activity and interaction with the Cu transporter Heavy metal-transporting P-type ATPase5. In this study, we demonstrate that ATX1 plays an essential role in Cu homeostasis in conferring tolerance to excess Cu and Cu deficiency. The possible mechanism is discussed. 相似文献
15.
First identified as a pathway for nutrient recovery during periods of starvation, the role of autophagy has expanded to the clearance of "toxic" intracellular material including ubiquitin-positive protein aggregates, damaged organelles as well as microbial pathogens in various cell types. We have examined the role of autophagy in the development and function of the adaptive immune system. Genes encoding autophagy machinery are expressed in T lymphocytes, and autophagy occurs in primary CD4+ and CD8+ T cells. By generating fetal liver chimeric mice, we found that thymocyte development is largely normal but the mature T cell compartment is severely reduced in the absence of the essential autophagy gene Atg5. Consistent with a critical role for autophagy in promoting T cell survival, Atg5-/- CD8+ T cells display high levels of apoptosis. Surprisingly, Atg5-deficient T cells were also unable to efficiently proliferate after T-cell receptor (TCR) stimulation. These findings suggest that autophagy regulates T lymphocyte homeostasis by promoting both survival and proliferation. In addition, T cells offer a new, physiologically relevant system to study the regulation and function of autophagy pathways in vivo. 相似文献
16.
P. Hyman 《Molecular & general genetics : MGG》1983,192(3):512-514
Summary Endonuclease VII, the product of phage T4 gene 49, has been shown previously to resolve Holliday structures in vitro. Two different processes, genetic recombination and multiplicity reactivation are presumed to have Holliday structure intermediates. Other workers have shown that genetic recombination is reduced in a gene 49 mutant infection. However, in the present study, multiplicity reactivation of UV-irradiated ts or amber mutant phage defective in gene 49 was nearly identical to that of UV-irradiated wild-type phage T4. Thus endonuclease VII is not thought to be essential for multiplicity reactivation of phage T4. 相似文献
17.
CD4 positive Leu-8 negative helper-inducer T cells predominate in the human intestinal lamina propria 总被引:4,自引:0,他引:4
M E Kanof W Strober C Fiocchi M Zeitz S P James 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(9):3029-3036
The regulatory function of peripheral blood CD4 T cells correlates with the presence or absence of the membrane glycoprotein recognized by anti-Leu-8 antibody; CD4,Leu8- T cells help Ig synthesis and CD4,Leu-8+ T cells suppress Ig synthesis. In contrast to CD4 T cells from the peripheral blood and organized gut-associated lymphoid tissues, intestinal lamina propria CD4 T cells were found to have diminished expression of the Leu-8 Ag. Therefore, studies were performed to determine whether the decreased expression of the Leu-8 Ag on lamina propria CD4 T cells correlates with a difference in the ability of peripheral blood and lamina propria CD4 T cells to regulate PWM-stimulated Ig synthesis. At high T cell to non-T cell ratios, the helper function of lamina propria CD4 T cells was significantly higher than that of peripheral blood CD4 T cells. When CD4 T cells were incubated with anti-Leu-8 antibody, the suppressor function of peripheral blood CD4 T cells was increased, but lamina propria CD4 T cells did not suppress Ig synthesis. No difference was found between the helper function of CD4,Leu-8- T cells and the suppressor function of CD4, Leu-8+ T cells isolated from either the peripheral blood or the lamina propria. Thus, the difference in the regulatory function of CD4 T cells from the peripheral blood and the lamina propria is due to the quantitative difference in CD4,Leu-8+ T cells in these sites. Consequently, the intestinal lamina propria is a site enriched in CD4,Leu-8- T cells which predominantly mediate help for Ig synthesis. 相似文献
18.
《Life sciences》1994,54(9):PL147-PL151
We developed an experimental model to study the effect of daily cocaine administration on the mucosal immune system during murine acquired immune deficiency syndrome (MAIDS). Mice were infected with LP-BM5 murine leukemia virus, a retrovirus which causes immunosuppression with development of functional murine AIDS. Mice were given cocaine by daily intraperitoneal injection for 11 weeks. Our objective was to investigate if cocaine treatment could alter the mucosal immune system at the level of the intestinal lamina propria (ILP) and if it could further modify the already altered mucosal immunity when it was administered to MAIDS-mice. Daily cocaine administration induced a significant decrease in the number of IgA+ cells with a concomitant increase in the number of CD8+ cells per villi in the ILP. Murine retrovirus infection alone decreased the number of IgA+ and CD4+ cells in the ILP, and this decreased was even more marked when MAIDS mice also received cocaine. These data indicate that cocaine administration could potentiate the dramatic effect that MAIDS infection has in the mucosal-associated lymphoid tissues. 相似文献
19.
Makita S Kanai T Oshima S Uraushihara K Totsuka T Sawada T Nakamura T Koganei K Fukushima T Watanabe M 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(5):3119-3130
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis. 相似文献
20.
Jang MH Sougawa N Tanaka T Hirata T Hiroi T Tohya K Guo Z Umemoto E Ebisuno Y Yang BG Seoh JY Lipp M Kiyono H Miyasaka M 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(2):803-810
Although dendritic cells (DCs) located in the small intestinal lamina propria (LP-DCs) migrate to mesenteric lymph nodes (MLNs) constitutively, it is unclear which chemokines regulate their trafficking to MLNs. In this study we report that LP-DCs in unperturbed mice require CCR7 to migrate to MLNs. In vitro, LP-DCs expressing CCR7 migrated toward CCL21, although the LP-DCs appeared morphologically and phenotypically immature. In MLNs, DCs bearing the unique LP-DC phenotype (CD11chighCD8alphaintCD11blowalphaLlowbeta7high and CD11chighCD8alpha-CD11bhighalphaLlowbeta7high) were abundant in wild-type mice, but were markedly fewer in CCL19-, CCL21-Ser-deficient plt/plt mice and were almost absent in CCR7-deficient mice, indicating the critical importance of CCR7 in LP-DC trafficking to MLNs. Interestingly, CCR7+ DCs in MLNs with the unique LP-DC phenotype had numerous vacuoles containing cellular debris in the cytoplasm, although MLN-DCs themselves were poorly phagocytic, suggesting that the debris was derived from the LP, where the LP-DCs ingested apoptotic intestinal epithelial cells (IECs). Consistent with this, LP-DCs ingested IECs vigorously in vitro. By presenting IEC-associated Ag, the LP-DCs also induce T cells to produce IL-4 and IL-10. Collectively, these results strongly suggest that LP-DCs with unique immunomodulatory activities migrate to MLNs in a CCR7-dependent manner to engage in the presentation of IEC-associated Ags acquired in the LP. 相似文献