首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
We recently identified a novel ABC A subclass transporter, ABCA6, in human macrophages. Here, we report the molecular cloning of an additional ABC A subfamily transporter from macrophages denoted ABCA9. The identified coding sequence is 4.9 kb in size and codes for a 1624 amino acid protein product. In accordance with the proposed nomenclature, the novel transporter was designated ABCA9. The putative full-length ABC transporter polypeptide consists of two transmembrane domains and two nucleotide binding folds and thus conforms to the group of full-size ABC transporters. We identified alternative ABCA9 mRNA variants in human macrophages that predict the existence of three truncated forms of the novel transporter. Among the human ABC A subfamily transporters, ABCA9 exhibits the highest amino acid sequence homology with ABCA8 (72%) and ABCA6 (60%), respectively. The striking amino acid sequence similarity between these transporter molecules supports the notion that they represent an evolutionary more recently emerged subgroup within the family of ABC A transporters, which we refer to as "ABCA6-like transporters." ABCA9 mRNA is ubiquitously expressed with the highest mRNA levels in heart, brain, and fetal tissues. Analysis of the genomic structure revealed that the ABCA9 gene consists of 39 exons that are located within a genomic region of approximately 85 kb size on chromosome 17q24.2. In human macrophages, ABCA9 mRNA is induced during monocyte differentiation into macrophages and suppressed by cholesterol import indicating that ABCA9, like other known ABC A subfamily transporters, is a cholesterol-responsive gene. Based on this information, ABCA9 is likely involved in monocyte differentiation and macrophage lipid homeostasis.  相似文献   

6.
7.
We report the identification of the full-length cDNA for a novel ATP-binding cassette (ABC) transporter from human macrophages. The mRNA is of 6.8 kb size and contains an open reading frame encoding a polypeptide of 2146 amino acids with a calculated molecular weight of 220 kDa. The predicted protein product is composed of two transmembrane domains and two nucleotide binding folds indicating that it pertains to the group of full-size ABC transporters. The novel transporter shows highest protein sequence homology with the recently cloned human cholesterol and phospholipid exporter ABCA1 (54%) and the human retinal transporter ABCR (49%), both members of the ABC transporter subfamily A. In accordance with the currently proposed classification, the novel transporter was designated ABCA7. ABCA7 mRNA was detected predominantly in myelo-lymphatic tissues with highest expression in peripheral leukocytes, thymus, spleen, and bone marrow. Expression of ABCA7 is induced during in vitro differentiation of human monocytes into macrophages. In macrophages, both the ABCA7 mRNA and protein expression are upregulated in the presence of modified low density lipoprotein and downregulated by HDL(3). Our results suggest a role for ABCA7 in macrophage transmembrane lipid transport.  相似文献   

8.
Chen  Zhang-qun  Annilo  Tarmo  Shulenin  Sergey  Dean  Michael 《Mammalian genome》2004,15(5):335-343
We have identified and cloned three mouse genes that belong to the ABCA subfamily of ATP-binding cassette (ABC) transporters. These three genes are arranged in a tandem head-to-tail cluster spanning about 300 kb on mouse Chromosome (Chr) 7F3. Phylogenetic analysis indicates that although the three genes are related to human and mouse ABCA3, they are not orthologs of any of the current list of 48 human ABC genes and were, therefore, named Abca14, Abca15, and Abca16. The coding region of each gene is split into 31 exons, has an open reading frame of more than 1600 amino acids, and encodes a full transporter molecule with two nucleotide-binding folds (NBF) and two transmembrane domains (TMD). All three genes are predominantly expressed in testis, which suggests that they may perform special functions in testicular development or spermatogenesis. Interestingly, the human genome contains only fragments (less than ten exons) of at least two different ABC genes in the syntenic region on Chromosome 16p12 that are scattered among other, unrelated genes and are not capable of coding functional ABC transporters.(Zhang-qun Chen and Tarmo Annilo) These authors contributed equally to this study.Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession numbers AY243470–AY243472.  相似文献   

9.
10.
ABC A-subfamily transporters: structure, function and disease   总被引:7,自引:0,他引:7  
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.  相似文献   

11.
12.
Several years ago, we initiated a long-term project of cloning new human ATP-binding cassette (ABC) transporters and linking them to various disease phenotypes. As one of the results of this project, we present two new members of the human ABCC subfamily, ABCC11 and ABCC12. These two new human ABC transporters were fully characterized and mapped to the human chromosome 16q12. With the addition of these two genes, the complete human ABCC subfamily has 12 identified members (ABCC1-12), nine from the multidrug resistance-like subgroup, two from the sulfonylurea receptor subgroup, and the CFTR gene. Phylogenetic analysis determined that ABCC11 and ABCC12 are derived by duplication, and are most closely related to the ABCC5 gene. Genetic variation in some ABCC subfamily members is associated with human inherited diseases, including cystic fibrosis (CFTR/ABCC7), Dubin-Johnson syndrome (ABCC2), pseudoxanthoma elasticum (ABCC6) and familial persistent hyperinsulinemic hypoglycemia of infancy (ABCC8). Since ABCC11 and ABCC12 were mapped to a region harboring gene(s) for paroxysmal kinesigenic choreoathetosis, the two genes represent positional candidates for this disorder.  相似文献   

13.
We characterized a new human ATP-binding cassette (ABC) transporter gene that is highly expressed in the liver. The gene, ABCG5, contains 13 exons and encodes a 651 amino acid protein. The predicted protein is closely related to the Drosophila white gene and a human gene, ABCG1, which is induced by cholesterol. This subfamily of genes all have a single ATP-binding domain at the N-terminus and a single C-terminal set of transmembrane segments. ABCG5 maps to human chromosome 2p21, between the markers D2S117 and D2S119. The abundant expression of this gene in the liver suggests that the protein product has an important role in transport of specific molecule(s) into or out of this tissue.  相似文献   

14.
15.
Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, an inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains an open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped.  相似文献   

16.
17.
The ATP-binding cassette transporter G1 (ABCG1) was recently identified as a regulator of macrophage cholesterol and phospholipid transport. This transporter together with ABCA1 belongs to a group of sterol-sensitive ABC proteins which are induced by lipid loading or specific oxysterols. We report here the genomic structure of ABCG1 along with the 5' flanking sequence using library screening and BLAST search analysis. The ABCG1 gene spans more than 70 kb and contains 15 exons. The exon size is between 30 and 1081 bp and the introns range in size from 137 bp to more than 45 kb. All exon-intron boundaries display the canonical GT/AG sequences. Using promoter-luciferase reporter assays in the myeloid cell lines THP-1 and RAW246.7 and the hepatoma cell line HepG2 we could demonstrate the functionality of the ABCG1 promoter and the minimal sequence requirements for gene expression. The TATA-less proximal promoter contains multiple Sp1 binding sites and a consensus sequence for sterol regulatory element binding protein.  相似文献   

18.
19.
The ATP-binding cassette transporters are a large family (~ 48 genes divided into seven families A–G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC “A” subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.  相似文献   

20.
L A Godley  F Lai  J Liu  N Zhao  M M Le Beau 《Genomics》1999,60(2):226-233
A deletion of the long arm of chromosome 5 is a recurring abnormality in malignant myeloid disorders. In previous studies, we identified an approximately 1-Mb segment in 5q31 that was deleted in all patients examined. As part of a positional cloning project to identify transcribed sequences in this region, we identified and characterized the TTID gene. This gene contains 10 exons that extend over 19 kb. The composite cDNA is approximately 2.3 kb and encodes a protein of 498 amino acids, with a predicted molecular mass of 55 kDa. The C-terminal half of this putative protein contains an internally repeated domain of 43 amino acids, which resembles the N-terminal half of an immunoglobulin domain from the immense skeletal muscle protein titin. The TTID gene is expressed in multiple muscle tissue types as well as in thyroid gland and bone marrow. We evaluated the gene as a candidate tumor suppressor gene by searching for mutations in malignant myeloid disorders with abnormalities of chromosome 5. However, we detected no inactivating mutations. A single nucleotide change (G to A) was identified at nucleotide position 1889 in the untranslated region of the mRNA, which may represent a polymorphism. Therefore, TTID is unlikely to be the candidate tumor suppressor gene involved in malignant myeloid disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号