首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posteroanterior spinal stiffness assessments are common in the evaluating patients with low back pain. The purpose of this study was to determine the effects of mechanical excitation frequency on dynamic lumbar spine stiffness. A computer-controlled voice coil actuator equipped with a load cell and LVDT was used to deliver an oscillatory dorsoventral (DV) mechanical force to the L3 spinous process of 15 adolescent Merino sheep. DV forces (48 N peak, approximately 10% body weight) were randomly applied at periodic excitation frequencies of 2.0, 6.0, 11.7 and a 0.5-19.7 Hz sweep. Force and displacement were recorded over a 13-22 s time interval. The in vivo DV stiffness of the ovine spine was frequency dependent and varied 3.7-fold over the 0.5-19.7 Hz mechanical excitation frequency range. Minimum and maximum DV stiffness (force/displacement) were 3.86+/-0.38 and 14.1+/-9.95 N/mm at 4.0 and 19.7 Hz, respectively. Stiffness values based on the swept-sine measurements were not significantly different from corresponding periodic oscillations (2.0 and 6.0 Hz). The mean coefficient of variation in the swept-sine DV dynamic stiffness assessment method was 15%, which was similar to the periodic oscillation method (10-16%). The results indicate that changes in mechanical excitation frequency and animal body mass modulate DV spinal stiffness.  相似文献   

2.
The aims of the study are to develop a non-invasive animal model of circular motion exercise and to evaluate the effect of this type of exercise on bone turnover in young rats. The circular motion exercise simulates isometric exercise using an orbital shaker that oscillates at a frequency of 50 Hz and is capable of speeds from 0-400 rpm. A cage is fixed on top of the shaker and the animals are placed inside. When the shaker is turned on, the oscillatory movement should encourage the animals to hold on to the cage and use various muscle forces to stabilize themselves. Rats at 8 weeks of age were trained on the shaker for 6 weeks and static and dynamic histomorphometric analyses were performed for the proximal tibial metaphysis and the tibial shaft. The exercise resulted in no significant effect on animal body weight, gastrocnemius muscle weight and femoral weight. Although the bone formation rate of cancellous and cortical periosteum was increased by the exercise, trabecular bone volume was decreased. The exercise increased periosteal and marrow perimeters and the cross-sectional diameter of cortical bone from medial to lateral without a significant increase in the cortical bone area. These results suggest that circular motion exercise under force without movement or additional weight loading will cause bone-modeling drift with an increase in bone turnover to reconstruct bone shape in adaptation to the demand in strength. Since there is no additional weight loading during circular motion exercise, the net mass of bone is not increased. The bone mass lost in trabecular bone could possibly be due to a re-distribution of mineral to the cortical bone.  相似文献   

3.
The purposes of the present study were: (1) to compare four different methods of calculating mechanical power in running on the basis of comparable data over a wide range of running velocity; (2) to examine the linearity of the relation between mechanical power as calculated with the four methods and running velocity. Eight runners participated in the investigation (height: 1.82 +/- 0.03 m, body mass: 81.05 +/- 4.69 kg). A Kistler force platform registered all components of the ground reaction force (1000 Hz) during one foot ground contact, which was additionally video taped using two high-speed video cameras running at 120 Hz. Four different methods were used to calculate mechanical power. Two methods determined the mechanical power due to the work done on the athletes' center of mass and two were calculated from the motion of the athletes' segments. The four different methods provided different relations between mechanical power and running velocity. The calculations on the basis of kinematic data cannot be recommended to determine efficiency of movement. The methods based on ground reaction force measurements revealed significant linear relations (r = 0.90, r2 = 0.84) between running velocity and mechanical power.  相似文献   

4.
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.  相似文献   

5.
We examined the mechanisms underlying force feedback in cockroach walking by recording sensory and motor activities in freely moving animals under varied load conditions. Tibial campaniform sensilla monitor forces in the leg via strains in the exoskeleton. A subgroup (proximal receptors) discharge in the stance phase of walking. This activity has been thought to result from leg loading derived from body mass. We compared sensory activities when animals walked freely in an arena or on an oiled glass plate with their body weight supported. The plate was oriented either horizontally (70-75% of body weight supported) or vertically (with the gravitational vector parallel to the substrate). Proximal sensilla discharged following the onset of stance in all load conditions. In addition, activity was decreased in the middle third of the stance phase when the effect of body weight was reduced. Our results suggest that sensory discharges early in stance result from forces generated by contractions of muscles that press the leg as a lever against the substrate. These forces can unload legs already in stance and assure the smooth transition of support among the limbs. Force feedback later in stance may adjust motor output to changes in leg loading.  相似文献   

6.
The effect of loading rate on specimen calibration was investigated for an implantable force sensor of the two-point loading variety. This variety of sensor incorporates a strain gage to measure the compressive load applied to the sensor due to tensile loading in a soft tissue specimen. The Achilles tendon in each of four human cadaveric lower extremities was instrumented with a force sensor and then loaded in tension using a materials testing machine. Each specimen was tensile tested at three different displacement rates, 0.25, 2.5 and 12.7 cm s(-1), corresponding with mean loading rates of 33.8, 513.2, and 2838.6 N s(-1), respectively. A calibration curve relating the force sensor signal and applied tendon tension was generated for each specimen/ displacement rate combination. For each specimen, calibration curves were compared by calculating an RMS error for the entire data set (eRMS = 1.6% of the full load value) and a coefficient of determination, R2, of a curve fit through all of the data (R2 = 99.6%). Over the range of rates tested, no measurable change in sensor sensitivity due to loading rate was observed. Hysteresis for all displacement rates was on the order of 2.4%.  相似文献   

7.
Segmental bone defect animal models are often used for evaluating the bone regeneration performance of bone substituting biomaterials. Since bone regeneration is dependent on mechanical loading, it is important to determine mechanical load transfer after stabilization of the defect and to study the effects of biomaterial stiffness on the transmitted load. In this study, we assess the mechanical load transmitted over a 6 mm femur defect that is stabilized with an internal PEEK fixation plate. Subsequently, three types of selective laser melted porous titanium implants with different stiffness values were used to graft the defect (five specimens per group). In one additional group, the defect was left empty. Micro strain gauges were used to measure strain values at four different locations of the fixation plate during external loading on the femoral head. The load sharing between the fixation plate and titanium implant was highly variable with standard deviations of measured strain values between 31 and 93% of the mean values. As a consequence, no significant differences were measured between the forces transmitted through the titanium implants with different elastic moduli. Only some non-significant trends were observed in the mean strain values that, consistent with the results of a previous finite element study, implied the force transmitted through the implant increases with the implant stiffness. The applied internal fixation method does not standardize mechanical loading over the defect to enable detecting small differences in bone regeneration performances of bone substituting biomaterials. In conclusion, the fixation method requires further optimization to reduce the effects of the operative procedure and make the mechanical loading more consistent and improve the overall sensitivity of this rat femur defect model.  相似文献   

8.
Animal models are commonly used to test the efficacy of impact loading regimens on bone strength. We designed an inexpensive force platform to concurrently measure the separate peak vertical impact forces produced by the fore and hindfeet of immature F-344 rats when dropped onto the platform. The force platform consisted of three load cells placed in a triangular pattern under a flat plate. Rats were dropped from heights of 30, 45 and 60 cm onto the platform so that they landed on all four feet concurrently. The peak vertical impact forces produced by the feet of the rats were measured using a sampling frequency of 100 kHz. The location of each foot at landing relative to the load cells, and the force received by each load cell were combined in a series of static equations to solve for the vertical impact forces produced by the fore and hindfeet. The forces produced by feet when rats stood on the single platform were similarly determined. The forces exerted separately by the fore and hindfeet of young rats when landing on the plate as a ratio to standing forces were then calculated. Rats when standing bore more weight on their hindfeet but landed with more weight on their forefeet, which provides rationale for the greater response to landing forces of bones in the forelimbs than those in the hindlimbs. This system provided a useful method to simultaneously measure peak vertical impact forces in fore and hindfeet in rats.  相似文献   

9.
Vibrational loading can stimulate the formation of new trabecular bone or maintain bone mass. Studies investigating vibrational loading have often used whole-body vibration (WBV) as their loading method. However, WBV has limitations in small animal studies because transmissibility of vibration is dependent on posture. In this study, we propose constrained tibial vibration (CTV) as an experimental method for vibrational loading of mice under controlled conditions. In CTV, the lower leg of an anesthetized mouse is subjected to vertical vibrational loading while supporting a mass. The setup approximates a one degree-of-freedom vibrational system. Accelerometers were used to measure transmissibility of vibration through the lower leg in CTV at frequencies from 20 Hz to 150 Hz. First, the frequency response of transmissibility was quantified in vivo, and dissections were performed to remove one component of the mouse leg (the knee joint, foot, or soft tissue) to investigate the contribution of each component to the frequency response of the intact leg. Next, a finite element (FE) model of a mouse tibia-fibula was used to estimate the deformation of the bone during CTV. Finally, strain gages were used to determine the dependence of bone strain on loading frequency. The in vivo mouse leg in the CTV system had a resonant frequency of 60 Hz for +/-0.5 G vibration (1.0 G peak to peak). Removing the foot caused the natural frequency of the system to shift from 60 Hz to 70 Hz, removing the soft tissue caused no change in natural frequency, and removing the knee changed the natural frequency from 60 Hz to 90 Hz. By using the FE model, maximum tensile and compressive strains during CTV were estimated to be on the cranial-medial and caudolateral surfaces of the tibia, respectively, and the peak transmissibility and peak cortical strain occurred at the same frequency. Strain gage data confirmed the relationship between peak transmissibility and peak bone strain indicated by the FE model, and showed that the maximum cyclic tibial strain during CTV of the intact leg was 330+/-82microepsilon and occurred at 60-70 Hz. This study presents a comprehensive mechanical analysis of CTV, a loading method for studying vibrational loading under controlled conditions. This model will be used in future in vivo studies and will potentially become an important tool for understanding the response of bone to vibrational loading.  相似文献   

10.
Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 s at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were <2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia.  相似文献   

11.
Simultaneous monitoring of amperometric currents at a glass capillary sensor based on recombinant GluOx and field excitatory postsynaptic potentials (fEPSPs) were performed in region CA1 of mouse hippocampal slices. A transient increase in the glutamate current relative to the basal one at control stimulation (0.052Hz) was evoked by stimulation at 2 Hz for 2 min. The magnitude of the glutamate current was dependent on the intensity (current) of a 2 Hz stimulus and reflected the slope of the fEPSP. The in situ calibration of the L-glutamate sensor revealed that the extracellular concentration of L-glutamate released by 2 Hz stimulation before tetanus is in the range from 0.8 to 2.2 μM and it is enhanced after tetanic stimulation. The L-glutamate level at a test stimulus (0.052 Hz) was estimated to be 32 nM. The recombinant GluOx-based sensor exhibited weak responses to glutamine above 300 μM and L-aspartic acid above 200 μM. The potential use of a glass capillary sensor in combination with fEPSP measurements for electrophysiological study is discussed.  相似文献   

12.
目的介绍一种用于实验动物手术、立体定向给药、PET、核磁共振、CT、电生理检测等操作的多功能实验操作平台。方法采用高强度的有机玻璃板、有机玻璃棒和尼龙棒等工程塑料制作多功能实验操作平台,在该装置的固定下,完成各种实验动物手术、立体定向给药、PET、磁共振成像、CT、电生理检测等操作。结果用该操作平台实验动物得到了稳妥固定、精确定位,并实现各项实验指标的无失真的观测。结论该操作平台设计合理、使用简单、功能多样,是一种良好的实验动物操作平台。  相似文献   

13.
Dynamic deformation and recovery responses of red blood cells (RBCs) to a cyclically reversing shear flow generated in a 30-microm clearance, with the peak shear stress of 53, 108, 161, and 274 Pa at the frequency of 1, 2, 3, and 5 Hz, respectively, were studied. The RBCs' time-varying velocity varied after the glass plate velocity without any time lag, whereas the L/W change, where L and W were the major and minor axes of RBCs' ellipsoidal shape, exhibited a rapid increase and gradual decay during the deformation and recovery phase. The time of minimum L/W occurrence lagged behind the zero-velocity time of the glass plate (zero stress), and the delay time normalized to the one-cycle duration remained constant at 8.0%. The elongation of RBCs at zero stress time became larger with the reversing frequency. A simple mechanical model consisting of an elastic linear element during a rapid elongation period and a parallel combination of elements such as a spring and dashpot during the nonlinear recovery phase was suggested. The dynamic response behavior of RBCs under a cyclically reversing shear flow was different from the conventional shape change where a steplike force was applied to and completely released from the RBCs.  相似文献   

14.
Although growth plate response to mechanical stress has been increasingly studied, our understanding of mechanical modulation of neonatal growth plate is incomplete, especially concerning biochemical changes. This study was designed to explore the cellular and biochemical responses of the cranial base growth plate (CBGP) explant upon cyclic loading. The growth plate with subchondral bone was aseptically isolated from each of 24 neonatal rabbits and fixated in an organ culture system. Cyclic loading was applied to growth plate explants at 200 mN and 1 Hz for 60 min (N=12), whereas control explants were immersed in organ culture for 60 min without mechanical loading (N=12). Computerized image analysis revealed that cyclic loading induced significantly more proliferating chondrocytes than unloaded controls (p<0.001), as well as significantly higher growth plate height at 856+/-30 microm than the unloaded controls at 830+/-36 microm (p<0.05). Immunoblotting with monoclonal antibodies (mAb) disclosed that the average mAb binding area for chondroitin sulfate was significantly higher in the loaded specimens than the unloaded controls at (p<0.001). The average mAb binding area for keratan sulfate was also significantly higher in the loaded specimens than the unloaded controls (p<0.01). Biochemical analysis showed that the average total hyaluronan content of loaded specimens at 0.25+/-0.06 microg/microg DNA was significantly higher than the unloaded controls at 0.09+/-0.05 microg/microg DNA (p<0.01). Taken together, these data suggest that brief doses of cyclic, intermittent forces activate cellular and molecular responses in the CBGP ex vivo. Whether hyaluronan-mediated pathway is involved in the biological responses of growth plate to mechanical loading warrants additional investigations.  相似文献   

15.
We have implemented a 41-day ground-based study to investigate the effects of daily artificial gravity loading on bed rest deconditioned human subjects. Each subject underwent 21 days of 6 degree head-down bed rest. Treatment subjects received 60 min daily doses of inertial mechanical loading (2.5 G at the feet decreasing to 1 G at the heart) produced by a short radius centrifuge. During rotation, the subject's cardiovascular responses were monitored via ECG, blood pressure and pulse oximetry, and subjective assessment of motion sickness and overall health were periodically requested. The subject's weight distribution at the feet was measured using a force plate, and lower leg muscle activity was monitored via surface electromyography. Control subjects were instrumented but did not receive any centrifugation. This paper provides details on the centrifuge protocol development and efficacy.  相似文献   

16.
Muscle, bone, and tendon forces; the movement of the center of mass, and the spring properties of the body during terrestrial locomotion can be measured using ground-mounted force platforms. These measurements have been extremely time consuming because of the difficulty in obtaining repeatable constant speed trials (particularly with animals). We have overcome this difficulty by mounting a force platform directly under the belt of a motorized treadmill. With this arrangement, vertical force can be recorded from an unlimited number of successive ground contacts in a much shorter time. With this treadmill-mounted force platform it is possible to accurately make the following measurements over the full range of steady speeds and under various perturbations of normal gait: 1) vertical ground reaction force over the course of the contact phase; 2) peak forces in bone, muscle, and tendon; 3) the vertical displacement of the center of mass; and 4) contact time for the limbs. In our treadmill-force platform design, belt forces and frictional forces cause no measurable cross-talk problem. Natural frequency (160 Hz), nonlinearity (less than 5%), and position independence (less than 2%) are all quite acceptable. Motor-caused vibrations are greater than 150 Hz and thus can be easily filtered.  相似文献   

17.
Axial movement occurring at the fracture site has been determined in a group of healing tibial fractures treated by external skeletal fixation. Fracture movement was determined via a strain gauge transducer which was attached to the column of the external fixator and measured the deflection of the bone screw adjacent to the fracture site and the active loading or weight bearing given by the patient to the fractured limb was monitored using a force platform. The results for 27 subjects show that, with a rigid unilateral fixator, the axial movement occurring at the fracture site was initially small (mean = 0.28 mm at 5 weeks post fracture). This movement increases to reach a mean maximum value of 0.43 mm at 11 weeks post-fracture and then decreases, despite increased weight bearing, as fracture healing progresses. In the early stages of healing, the movement can be increased slightly if the fixator is fitted with a module which permits additional fracture site movement, although the resultant increase in movement is only a small proportion of the potential available with this module.  相似文献   

18.
Muscle surface displacement is a mechanical event taking place simultaneously with the tension generation at the tendon. The two phenomena can be studied by the surface mechanomyogram signal (MMG) (produced by a laser distance sensor) and the force signal (from a load cell). The aim of this paper was to provide data on the reliability of the laser detected MMG in muscle mechanics research. To this purpose it was verified if the laser detected MMG was suitable to estimate a frequency response in the cat medial gastrocnemius and its frequency response was compared with the one retrieved by the force signal at the tendon level. The force and MMG from the exposed medial gastrocnemius of four cats were analysed. The frequency response was investigated by sinusoidally changing the number of orderly recruited motor units, in different trials, in the 0.4-6 Hz range. It resulted that it was possible to model the force and MMG frequency response by a critically damped second-order system with two real double poles and a pure time delay. On the average, the poles were at 1.83 Hz (with 22.6 ms delay) and at 2.75 Hz (with 38 ms delay) for force and MMG, respectively. It can be concluded that MMG appears to be a reliable tool to investigate the muscle frequency response during stimulated isometric contraction. Even though not statistically significant. the differences in the second-order system parameters suggest that different components of the muscle mechanical model may specifically affect the force or MMG.  相似文献   

19.
Stable positioning between a measurement probe and its target from sub- to few micrometer scales has become a prerequisite in precision metrology and in cellular level measurements from biological tissues. Here we present a 3D stabilization system based on an optoelectronic displacement sensor and custom piezo-actuators driven by a feedback control loop that constantly aims to zero the relative movement between the sensor and the target. We used simulations and prototyping to characterize the developed system. Our results show that 95 % attenuation of movement artifacts is achieved at 1 Hz with stabilization performance declining to ca. 70 % attenuation at 10 Hz. Stabilization bandwidth is limited by mechanical resonances within the displacement sensor that occur at relatively low frequencies, and are attributable to the sensor's high force sensitivity. We successfully used brain derived micromotion trajectories as a demonstration of complex movement stabilization. The micromotion was reduced to a level of ~1 μm with nearly 100 fold attenuation at the lower frequencies that are typically associated with physiological processes. These results, and possible improvements of the system, are discussed with a focus on possible ways to increase the sensor's force sensitivity without compromising overall system bandwidth.  相似文献   

20.
The metabolic cost of walking is determined by many mechanical tasks, but the individual contribution of each task remains unclear. We hypothesized that the force generated to support body weight and the work performed to redirect and accelerate body mass each individually incur a significant metabolic cost during normal walking. To test our hypothesis, we measured changes in metabolic rate in response to combinations of simulated reduced gravity and added loading. We found that reducing body weight by simulating reduced gravity modestly decreased net metabolic rate. By calculating the metabolic cost per Newton of reduced body weight, we deduced that generating force to support body weight comprises approximately 28% of the metabolic cost of normal walking. Similar to previous loading studies, we found that adding both weight and mass increased net metabolic rate in more than direct proportion to load. However, when we added mass alone by using a combination of simulated reduced gravity and added load, net metabolic rate increased about one-half as much as when we added both weight and mass. By calculating the cost per kilogram of added mass, we deduced that the work performed on the center of mass comprises approximately 45% of the metabolic cost of normal walking. Our findings support the hypothesis that force and work each incur a significant metabolic cost. Specifically, the cost of performing work to redirect and accelerate the center of mass is almost twice as great as the cost of generating force to support body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号