首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies demonstrated that exposure to simulated microgravity, head-down tilt (HDT), caused cephalad fluid shift, increased capillary pressure in the head, and produced facial edema and nasal congestion. It is also known that exposure to HDT affects hemodynamics in the brain. Cerebral blood flow (CBF) velocity increases for at least 6 hours after the onset of 6 degrees HDT in humans. Intracranial pressure (ICP) elevates during 6 degrees HDT in humans and monkeys. However, there is little information regarding edema formation in the brain due to HDT except a morphological study reported by Kaplansky and colleagues who showed that perivascular edema occurred in the monkey brain after 7 days of 6 degrees HDT. Thus, it is interesting to examine whether edema formation occurs in the other animal model for simulation of microgravity, since several factors such as the duration of HDT, angle of HDT, and species difference may affect the result. In the present study, formation of brain edema was investigated by histological examinations in rabbits exposed to 45 degrees HDT for 2 days or 8 days. We hypothesized that HDT causes brain edema which can be demonstrated as extravasation of plasma constituents and histological changes.  相似文献   

2.
During spaceflight the normal head-to-foot hydrostatic pressure gradients are eliminated and body fluids shift toward the head, resulting in a diminished fluid volume in the legs and an increased fluid volume in the head, neck, and upper extremities. Lymphatic function is important in the maintenance of normal tissue fluid volume, but it is not clear how microgravity influences lymphatic pumping. We performed a detailed evaluation of the influence of simulated microgravity on lymphatic diameter, wall thickness, elastance, tone, and other measures of phasic contractility in isolated lymphatics. Head-down tail suspension (HDT) rats were used to simulate the effects of microgravity. Animals were exposed to HDT for 2 wk, after which data were collected and compared with the control non-HDT group. Lymphatics from four regional lymphatic beds (thoracic duct, cervical, mesenteric, and femoral lymphatics) were isolated, cannulated, and pressurized. Input and output pressures were adjusted to apply a range of transmural pressures and flows to the lymphatics. Simulated microgravity caused a potent inhibition of pressure/stretch-stimulated pumping in all four groups of lymphatics. The greatest inhibition was found in cervical lymphatics. These findings presumably are correlated to the cephalic fluid shifts that occur in HDT rats as well as those observed during spaceflight. Flow-dependent pump inhibition was increased after HDT, especially in the thoracic duct. Mesenteric lymphatics were less strongly influenced by HDT, which may support the idea that lymph hydrodynamic conditions in the mesenteric lymphatic during HDT are not dramatically altered.  相似文献   

3.
Exposure to microgravity or simulated microgravity is known to affect regulatory function in autonomic nervous system. With regard to thermoregulation, simulated microgravity impairs sweating and induces lower skin and higher internal temperatures during physical work. During supine rest after HDT bed rest, the internal temperatures were reported to be higher than those of pre-HDT bed rest in some studies but not in others. There is no report about the dynamic changes of skin blood flow during 14-day HDT bed rest. The process of HDT bed-rest deconditioning on the function of the thermoregulatory system is virtually unknown. The HDT induces an immediate cephalad fluid shift which would inhibit the sympathetic outflow through the arterial and cardiopulmonary baroreflexes, which may increase the skin blood flow. On the other hand, prolonged HDT bed rest induces dehydration, which will increase sympathetic outflow through cardiopulmonary baroreceptor modulation. Both sympathetic activation and dehydration itself will decrease skin blood flow. It seems probable that the general effect on skin blood flow may reverse along the HDT bed rest. However, the dynamic characters of skin blood flow and body temperature during the HDT bed rest have not been studied thoroughly. Therefore, the purpose of present study was to investigate the changes of skin blood flow and body temperature during 14 days HDT bed rest.  相似文献   

4.
Spaceflight induces changes in human renal function, suggesting similar changes may occur in rats. Since rats continue to be the prime mammalian model for study in space, the effects of chronic microgravity on rat renal function should be clarified. Acute studies in rats using the ground-based microgravity simulation model, head-down tilt (HDT), have shown increases in glomerular filtration rate (GFR), electrolyte excretion, and a diuresis. However, long term effects of HDT have not been studied extensively. This study was performed to elucidate rat renal function following long-term simulated microgravity. Chronic exposure to HDT will cause an increase in GFR and electrolyte excretion in rats, similar to acute exposures, and lead to a decrease in the fractional excretion of filtered electrolytes. Experimental animals (HDT, n=10) were tail-suspended for 37 days and renal function compared to ambulatory controls (AMB, n=10). On day 37 of HDT, GFR, osmolal clearance, and electrolyte excretion were decreased, while plasma osmolality and free water clearance were increased. Urine output remained similar between groups. The fractional excretion of the filtered electrolytes was unchanged except for a decrease in the percentage of filtered calcium excreted. Chronic exposure to HDT results in decreased GFR and electrolyte excretion, but the fractional excretion of filtered electrolytes remained primarily unaffected.  相似文献   

5.
Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days head-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.  相似文献   

6.
Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (10(-5) M) and cyclooxygenase inhibitor indomethacin (10(-5) M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with N(G)-nitro-L-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.  相似文献   

7.
When human returns to the earth from space, the reverse shift of body fluid to the shift caused by microgravity. The physical phenomenon produces probably cardiovascular deconditioning due to a disturbance of the baroreflex for regulating blood pressure. To clarify the disturbance, the nervous control mechanisms of cardiovascular system in mammals exposed to microgravity should be investigated. Head-down tilt (HDT) is one of the methods to simulate the headward shift of the body fluid. To understand the effect of microgravity on the cardiovascular nervous control system, we studied effects of headward shift of the body fluid on structural and functional development of the aortic nerve and the aortic baroreflex in the young rabbit raised in a head-down and tail-up posture.  相似文献   

8.
To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head-down for 8 h, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.7 +/- 1.5 mmHg (mean +/- SE) pre-HDT to 33.9 +/- 1.7 mmHg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, whereas interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressure dropped significantly by 4 h of HDT (21.5 +/- 1.5 mmHg pre-HDT to 18.2 +/- 1.9 mmHg), suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 h of seated recovery from HDT, microvascular pressures in the lip (capillary and venule pressures) remained significantly elevated by 5-8 mmHg above baseline values. During HDT, urine output was 126.5 ml/h compared with 46.7 ml/h during the control baseline period. These results suggest that facial edema resulting from HDT is caused primarily by elevated capillary pressures and decreased plasma colloid osmotic pressures. The negativity of interstitial fluid pressures above heart level also has implications for maintenance of tissue fluid balance in upright posture.  相似文献   

9.
Vascular and tissue fluid dynamics in the microgravity of space environments is commonly simulated by head-down tilt (HDT). Previous reports have indicated that intracranial pressure and extracranial vascular pressures increase during acute HDT and may cause cerebral edema. Tissue water changes within the cranium are detectable by T2 magnetic resonance imaging. We obtained T2 images of sagittal slices from five subjects while they were supine and during -13 degrees HDT using a 1.5-Tesla whole-body magnet. The analysis of difference images demonstrated that HDT leads to a 21% reduction of T2 in the subarachnoid cerebrospinal fluid (CSF) compartment and a 11% reduction in the eyes, which implies a reduction of water content; no increase in T2 was observed in other brain regions that have been associated with cerebral edema. These findings suggest that water leaves the CSF and ocular compartments by exudation as a result of increased transmural pressure causing water to leave the cranium via the spinal CSF compartment or the venous circulation.  相似文献   

10.
Cutaneous vasodilation and sweat rate are reduced during a thermal challenge after simulated and actual microgravity exposure. The effects of microgravity exposure on cutaneous vasodilator capacity and on sweat gland function are unknown. The purpose of this study was to test the hypothesis that simulated microgravity exposure, using the 6 degrees head-down tilt (HDT) bed rest model, reduces maximal forearm cutaneous vascular conductance (FVC) and sweat gland function and that exercise during HDT preserves these responses. To test these hypotheses, 20 subjects were exposed to 14 days of strict HDT bed rest. Twelve of those subjects exercised (supine cycle ergometry) at 75% of pre-bed rest heart rate maximum for 90 min/day throughout HDT bed rest. Before and after HDT bed rest, maximal FVC was measured, via plethysmography, by heating the entire forearm to 42 degrees C for 45 min. Sweat gland function was assessed by administering 1 x 10(-6) to 2 M acetylcholine (9 doses) via intradermal microdialysis while simultaneously monitoring sweat rate over the microdialysis membranes. In the nonexercise group, maximal FVC and maximal stimulated sweat rate were significantly reduced after HDT bed rest. In contrast, these responses were unchanged in the exercise group. These data suggest that 14 days of simulated microgravity exposure, using the HDT bed rest model, reduces cutaneous vasodilator and sweating capacity, whereas aerobic exercise training during HDT bed rest preserves these responses.  相似文献   

11.
In the early phase of the Space Shuttle program, NASA flight surgeons implemented a fluid-loading countermeasure in which astronauts were instructed to ingest eight 1-g salt tablets with 960 ml of water approximately 2 hours prior to reentry from space. This fluid loading regimen was intended to enhance orthostatic tolerance by replacing circulating plasma volume reduced during the space mission. Unfortunately, fluid loading failed to replace plasma volume in groundbased experiments and has proven minimally effective as a countermeasure against post-spaceflight orthostatic intolerance. In addition to the reduction of plasma volume, central venous pressure (CVP) is reduced during exposure to actual and groundbased analogs of microgravity. In the present study, we hypothesized that the reduction in CVP due to exposure to microgravity represents a resetting of the CVP operating point to a lower threshold. A lower CVP 'setpoint' might explain the failure of fluid loading to restore plasma volume. In order to test this hypothesis, we conducted an investigation in which we administered an acute volume load (stimulus) and measured responses in CVP, plasma volume and renal functions. If our hypothesis is true, we would expect the elevation in CVP induced by saline infusion to return to its pre-infusion levels in both HDT and upright control conditions despite lower vascular volume during HDT. In contrast to previous experiments, our approach is novel in that it provides information on alterations in CVP and vascular volume during HDT that are necessary for interpretation of the proposed CVP operating point resetting hypothesis.  相似文献   

12.
Head-down tilt (HDT) is utilized to simulate microgravity and produces a cephalad fluid shift, which results in alterations in fluid and electrolyte balance. These changes in volume homeostasis are due, in part, to alterations in multiple volume control mechanisms in which renal function is a major participant. We have previously demonstrated that glomerular filtration rate increases early in HDT and eventually returns to values not different from non-tilt measurements. This early increase in glomerular filtration rate was also demonstrated during days 2 and 8 of the SLS-1 mission. However, urine flow and electrolyte excretion does not parallel the alterations in glomerular filtration rate and the site of this change in nephron fluid reabsorption pattern has not been previously examined. Through determination of the location of alterations in tubular fluid reabsorption within the nephron, a more detailed hypothesis can be forwarded as to which specific neuro-humoral agents participating in control of renal function in microgravity conditions. The importance of this type of examination is that measurements in circulating neuro-humoral agents and urinary excretion patterns alone are not accurate predictors of how renal functional response may alter to head-down tilt or other models of simulated weightlessness. To examine this issue, renal micropuncture techniques were utilized in Munich-Wistar rats submitted 24 hours and 14 day head-down tilt, measuring all the determinants of glomerular ultrafiltration and obtaining data regarding segmental tubular fluid reabsorption. Following these measurements, the rats were returned to an orthostatic position and after 60 min, the measurements were repeated.  相似文献   

13.
To reveal mechanisms responsible for changes in muscle contractility during microgravity, it seems expedient to perform similar studies under microgravity or conditions simulating microgravity. Among standard methods for simulating microgravity, hypokinesia modelling support unloading (or rather its redistribution), and hypodynamia are employed. Absence of weight loading, decreased muscular effort characteristic of the Earth conditions due to counteracting gravity, results in a general muscle underloading and therefore in lowered activity of the proprioceptive input. This may be one of the reasons not only for a resetting of motor coordination and control, but also for a gradual development of a persistent change in the motor control system. The basis of countermeasures against negative consequences of microgravity (hypokinesia) is the correct choice of countermeasures. In this connection of specific interest is a study of the magnitude of change in skeletal muscle contractility in humans after a variety of countermeasures when functional activity is lowered by a long-term 120-days HDT which is an adequate simulation of physiological microgravity-induced effects.  相似文献   

14.
We measured renal functions and hormones associated with fluid regulation after a bolus injection of aldosterone (Ald) during head-down tilt (HDT) bed rest to test the hypothesis that exposure to simulated microgravity altered renal responsiveness to Ald. Six male rhesus monkeys underwent two experimental conditions (HDT and control, 72 h each) with each condition separated by 9 days of ambulatory activities to produce a crossover counterbalance design. One test condition was continuous exposure to 10 degrees HDT; the second was a control, defined as 16 h per day of 80 degrees head-up tilt and 8 h prone. After 72 h of exposure to either test condition, monkeys were moved to the prone position, and we measured the following parameters for 4 h after injection of 1-mg dose of Ald: urine volume rate (UVR); renal Na(+)/K(+) excretion ratio; renal clearances of creatinine, Na(+), osmolality, and free water; and circulating hormones [Ald, renin activity (PRA), vasopressin (AVP), and atrial natriuretic peptide (ANP)]. HDT increased Na(+) clearance, total renal Na(+) excretion, urine Na(+) concentration, and fractional Na(+) excretion, compared with the control condition, but did not alter plasma concentrations of Ald, PRA, and AVP. Administration of Ald did not alter UVR, creatinine clearance, Ald, PRA, AVP, or ANP but reduced Na(+) clearance, total renal Na(+) excretion, urinary Na(+)/K(+) ratio, and osmotic clearance. Although reductions in Na(+) clearance and excretion due to Ald were greater during HDT than during control, the differential (i.e., interaction) effect was minimal between experimental conditions. Our data suggest that exposure to microgravity increases renal excretion of Na(+) by a natriuretic mechanism other than a change in renal responsiveness to Ald.  相似文献   

15.
To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a −6° head down tilt (HDT). A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a −6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm3 (13 voxels), which corresponded with the corrected threshold of P<0.05 determined by AlphaSim). Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.  相似文献   

16.
Exposures to microgravity and head-down tilt (HDT) produce similar changes in body fluid. This causes an increase in hematocrit that significantly affects hemorheological values. Lack of physical stimulation under bed rest conditions and the relative immobility of the crew during spaceflight also affects the blood fluidity. A group of six healthy male subjects participated as volunteers, and blood samples were collected 10 days before, on day 2 and day 9, and 2 days after the HDT phase. Blood rheology was quantified by plasma viscometry, red cell aggregability, and red cell deformability. A reduced red cell deformability, an indication of the diminished quality of the red blood cells, was measured under HDT conditions that finally led to the so-called "space flight anemia." Enhanced red cell membrane fragility induced by diminished physical activity and an increase in hemoglobin concentration are responsible for this effect. Plasma viscosity is reduced as a result of diminished plasma proteins. However, despite the reduction in plasma proteins, including fibrinogen, alpha 2-macroglobulin, and immunoglobulin M, red cell aggregation was enhanced, principally because of the increase in hematocrit. Our results of hemorheological alterations under HDT conditions may help to elucidate the formerly documented hematologic changes during spaceflight.  相似文献   

17.
The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of head-down tilt (HDT) or non-head-down tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approximately 20% (P < 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approximately 10%. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P < 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained unchanged. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.  相似文献   

18.
Diminished constriction of arteries and veins following exposure to microgravity or bed rest is associated with a reduced ability to augment peripheral vascular resistance (PVR) and stroke volume during orthostasis. We tested the hypothesis that small mesenteric arteries and veins, which are not exposed to large pressure shifts during simulated microgravity via head-down tail suspension (HDT), will exhibit decrements in adrenergic constriction after HDT in rats. Small mesenteric arteries and veins from control (Con; n = 41) and HDT (n = 35) male Sprague-Dawley rats were studied in vitro. Vasoactive responsiveness to norepinephrine (NE) in arteries (10(-9) to 10(-4) M) and veins (pressure-diameter responses from 2 to 12 cmH(2)O after incubation in 10(-6) or 10(-4) M NE) were evaluated. Plasma concentrations of atrial (ANP) and NH(2)-terminal prohormone brain (NT-proBNP) natriuretic peptides were also measured. In mesenteric arteries, sensitivity and maximal responsiveness to NE were reduced with HDT. In mesenteric veins there was a diminished venoconstriction to NE at any given pressure in HDT. Plasma concentrations of both ANP and NT-proBNP were increased with HDT, and maximal arterial and venous constrictor responses to NE after incubation with 10(-7) M ANP or brain natriuretic peptide (BNP) were diminished. These data demonstrate that, in a vascular bed not subjected to large hydrodynamic differences with HDT, both small arteries and veins have a reduced responsiveness to adrenergic stimulation. Elevated levels of circulating ANP or NT-proBNP could adversely affect the ability of these vascular beds to constrict in vivo and conceivably could alter the intrinsic constrictor properties of these vessels with long-term exposure.  相似文献   

19.
Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degrees head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degrees HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degrees HDT experience increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in intracranial volume that accompany changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.  相似文献   

20.
In 2 ESA-cosmonauts we compared the 24-hr profiles in blood pressure (BP) and heart rate (HR) to those that we had observed in an earlier head-down tilted (HDT) bed rest study. In view of the lack of gravitational stress, an attenuated profile was expected, as in HDT. To obtain a full profile we measured automatic upper-arm cuff measurements in 2 cosmonauts, combined with PortapresTM recordings in one. Unlike HDT, actual microgravity did not result in attenuated circadian profiles. The levels of systolic and diastolic pressures tended to be slightly lower in flight. Only nighttime heart rate was significantly lower in Space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号