首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

2.
The aim of this work is to describe the diversity of potentially symbiotic bacteria associated with the invasive introduced legume Robinia pseudoacacia in China. Thirty-three isolates from 33 separate trees and nodules were characterized using restriction length fragment polymorphism and sequencing of 16S rRNA, nodA, nodC and nifH genes. Their 16S rRNA gene patterns and sequences placed them in three clades: 85% of isolates were related to the Mesorhizobium mediterraneum/temperatum group, whereas the remaining were similar either to Mesorhizobium amorphae or to Sinorhizobium meliloti . However, despite their diverse taxonomic positions, the nodA, nodC and nifH genes' phylogenies indicated that these R. pseudoacacia symbionts share similar symbiosis genes, implying gene transfers and a degree of host specificity. Comparison of R. pseudoacacia symbiotic diversity in native and other invaded areas suggests that most Chinese symbionts may not have arrived with the seed but were local bacteria that acquired specific symbiotic genes from native American rhizobia.  相似文献   

3.
Biological nitrogen fixation is an important source of fixed nitrogen for the biosphere. Microorganisms catalyse biological nitrogen fixation with the enzyme nitrogenase, which has been highly conserved through evolution. Cloning and sequencing of one of the nitrogenase structural genes, nifH, has provided a large, rapidly expanding database of sequences from diverse terrestrial and aquatic environments. Comparison of nifH phylogenies to ribosomal RNA phylogenies from cultivated microorganisms shows little conclusive evidence of lateral gene transfer. Sequence diversity far outstrips representation by cultivated representatives. The phylogeny of nitrogenase includes branches that represent phylotypic groupings based on ribosomal RNA phylogeny, but also includes paralogous clades including the alternative, non-molybdenum, non-vanadium containing nitrogenases. Only a few alternative or archaeal nitrogenase sequences have as yet been obtained from the environment. Extensive analysis of the distribution of nifH phylotypes among habitats indicates that there are characteristic patterns of nitrogen fixing microorganisms in termite guts, sediment and soil environments, estuaries and salt marshes, and oligotrophic oceans. The distribution of nitrogen-fixing microorganisms, although not entirely dictated by the nitrogen availability in the environment, is non-random and can be predicted on the basis of habitat characteristics. The ability to assay for gene expression and investigate genome arrangements provides the promise of new tools for interrogating natural populations of diazotrophs. The broad analysis of nitrogenase genes provides a basis for developing molecular assays and bioinformatics approaches for the study of nitrogen fixation in the environment.  相似文献   

4.
Abstract The microorganisms participating in the anaerobic biodegradation of cyanide were characterized using 16S rRNA genes as genetic markers of diversity. Segments of mixed population 16S rRNA genes were amplified using the polymerase chain reaction (PCR) and prokaryote-specific amplification primers. Restriction fragment length polymorphism (RFLPs) and screening with the 926f universal sequencing primer were used to categorized the cloned PCR products. Six unique prokaryote sequence were obtained, including four similar to methanogens and two similar to Gram-positive eubacteria.  相似文献   

5.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   

6.
We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied.  相似文献   

7.
PCR amplification of the rRNA gene is the most popular method for assessing microbial diversity. However, this molecular marker is often present in multiple copies in cells presenting, in addition, an intragenomic heterogeneity. In this context, housekeeping genes may be used as taxonomic markers for ecological studies. However, the efficiency of these protein-coding genes compared to 16S rRNA genes has not been tested on environmental data. For this purpose, five protein marker genes for which primer sets are available, were selected (rplB, pyrG, fusA, leuS and rpoB) and compared with 16S rRNA gene results from PCR amplification or metagenomic data from aquatic ecosystems. Analysis of the major groups found in these ecosystems, such as Actinobacteria, Bacteroides, Proteobacteria and Cyanobacteria, showed good agreement between the protein markers and the results given by 16S rRNA genes from metagenomic reads. However, with the markers it was possible to detect minor groups among the microbial assemblages, providing more details compared to 16S rRNA results from PCR amplification. In addition, the use of a set of protein markers made it possible to deduce a mean copy number of rRNA operons. This average estimate is essentially lower than the one estimated in sequenced genomes.  相似文献   

8.
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

9.
Frankia genus-specific characterization by polymerase chain reaction.   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

10.
PCR primers to amplify 16S rRNA genes from cyanobacteria.   总被引:31,自引:8,他引:23       下载免费PDF全文
We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in unialgal but nonaxenic cultures and from cyanobionts in lichens could be directly sequenced. In the context of growing sequence databases, this procedure allows rapid and phylogenetically meaningful identification without pure cultures or molecular cloning. We demonstrate the use of this specific PCR in combination with denaturing gradient gel electrophoresis to probe the diversity of oxygenic phototrophic microorganisms in cultures, lichens, and complex microbial communities.  相似文献   

11.
12.
Differential amplification of rRNA genes by polymerase chain reaction.   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) is used widely to recover rRNA genes from naturally occurring communities for analysis of population constituents. We have found that this method can result in differential amplification of different rRNA genes. In particular, rDNAs of extremely thermophilic archaebacteria often cannot be amplified by the usual PCR methods. The addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes.  相似文献   

13.
Differential amplification of rRNA genes by polymerase chain reaction.   总被引:36,自引:18,他引:18       下载免费PDF全文
The polymerase chain reaction (PCR) is used widely to recover rRNA genes from naturally occurring communities for analysis of population constituents. We have found that this method can result in differential amplification of different rRNA genes. In particular, rDNAs of extremely thermophilic archaebacteria often cannot be amplified by the usual PCR methods. The addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes.  相似文献   

14.
Nitrogen fixation by the microorganisms in the gut of termites is one of the crucial aspects of symbiosis, since termites usually thrive on a nitrogen-poor diet. The phylogenetic diversity of the nitrogen-fixing organisms within the symbiotic community in the guts of various termite species was investigated without culturing the resident microorganisms. A portion of the dinitrogenase reductase gene (nifH) was directly amplified from DNA extracted from the mixed population in the termite gut. Analysis of deduced amino acid sequences of the products of the clonally isolated nifH genes revealed the presence of diverse nifH sequences in most of the individual termite species, and their constituents were considerably different among termite species. A majority of the nifH sequences from six lower termites, which showed significant levels of nitrogen fixation activity, could be assigned to either the anaerobic nif group (consisting of clostridia and sulfur reducers) or the alternative nif methanogen group among the nifH phylogenetic groups. In the case of three higher termites, which showed only low levels of nitrogen fixation activity, a large number of the sequences were assigned to the most divergent nif group, probably functioning in some process other than nitrogen fixation and being derived from methanogenic archaea. The nifH groups detected were similar within each termite family but different among the termite families, suggesting an evolutionary trend reflecting the diazotrophic habitats in the symbiotic community. Within these phylogenetic groups, the sequences from the termites formed lineages distinct from those previously recognized in studies using classical microbiological techniques, and several sequence clusters unique to termites were found. The results indicate the presence of diverse potentially nitrogen-fixing microbial assemblages in the guts of termites, and the majority of them are as yet uncharacterized.  相似文献   

15.
ABSTRACT. Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray–Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.  相似文献   

16.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

17.
Detection and characterization of cyanobacterial nifH genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
The DNA sequence of a 359-bp fragment of nifH was determined for the heterocystous strains Anabaena sp. strain CA (ATCC 33047), Nostoc muscorum UTEX 1933, a Nostoc sp., Gloeothece sp. strain ATCC 27152, Lyngbya lagerheimii UTEX 1930, and Plectonema boryanum IU 594. Results confirmed that the DNA sequence of the 359-bp segment is sufficiently variable to distinguish cyanobacterial nifH genes from other eubacterial and arachaeobacterial nifH genes, as well as to distinguish heterocystous from nonheterocystous nifH genes. Nonheterocystous cyanobacterial nifH sequences were greater than 70 and 82% identical on the DNA and amino acid levels, respectively, whereas corresponding values for heterocystous cyanobacterial nifH sequences were 84 and 91%. The amplified nifH fragments can be used as DNA probes to differentiate between species, although there was substantial cross-reactivity between the nifH amplification products of some strains. However, an oligonucleotide designed from a sequence conserved within the heterocystous cyanobacteria hybridized primarily with the amplification product from heterocystous strains. The use of oligonucleotides designed from amplified nifH sequences shows great promise for characterizing assemblages of diazotrophs.  相似文献   

18.
19.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

20.
Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号