首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Study was made of lethal and mutagenic effect of 1 M and 0,5 M O-methylhydroxylamine (OMHA) on extracellular phage Sd. The correlation between chemical changes of the genome and the degree of phage inactivation under the action of OMHA has been established within the range of studied pH (4,5-7,0) of the reaction medium. OMHA in activates the phage at the highest rate at pH 5,0, which agrees with chemical data indicating that the total rate of OMHA modification of cytidine units is maximal at this pH. Inactivation curves of OMHA-treated phage are single-hit at pH investigated, but have a small initial shoulder; at pH 5,0 and 4,5 inactivation curves consist of two exponents, the second exponent having the smallest slope, that is the phage is characterized by an increased resistance to OMHA at this section. The increased phage resistance can be explained by transforming the original product IV (cross-linked with protein) into the product II (N4-methoxy-6-methoxyamine-5,6-dihydrocytidine) which can be repaired in contrast to IV. OMHA has a high mutagenic effect on phage Sd. Under optimal conditions (at pH 4,5) the mutagen induces plaque mutants (up to 6%) among survived phages. The data obtained correlate with the fact that with decreasing pH (from 5,0 to 4,5) the ratio of the "mutagen" unit - N4-methoxycytidine (product III) to the "inactivating" one (product II) increases. The curves of mutation induction under the action of OMHA have a characteristic form with the initial linear section and the maximum or the plateau similar to mutation curves to be observed under the action of radiation and chemical agents.  相似文献   

2.
N4-Aminocytidine induced mutation to 6-thioguanine resistance in Chinese hamster lung V79 cells in culture. Previous studies with experimental systems of in vitro DNA synthesis and of phage and bacterial mutagenesis have shown that this nucleoside analog induces base-pair transitions through its incorporation into DNA, with its erroneous base-pairing property. Incorporation of exogenously added [5-3H]N4-aminocytidine into the DNA of V79 cells was in fact observed in the present study. N4-Aminodeoxycytidine was not mutagenic for the V79 cells. Several alkylated N4-aminocytidine derivatives were tested for their mutagenicity in this system. Those with an alkyl group on the N'-nitrogen of the hydrazino group at position 4 of N4-aminocytidine were mutagenic, but those having an alkyl on the N4-nitrogen were not. These results are consistent with those previously observed in the bacterial mutagenesis systems, and agree with a mechanism of mutation in which a tautomerization of N4-aminocytosine is the necessary step for causing the erroneous base pairing.  相似文献   

3.
The replication of the phage MS2 in the presence of either hydroxylamine (HA) or O-methylhydroxylamine (OMHA) (mutagenesis in vivo) results in an increase in the reversion frequency of two amber mutations in the maturation protein. When acting on the extracellular phage (mutagenesis in vitro) the mutagens do not affect the reversion frequency. The most probable mode of mutagenic action of the hydroxylamines on the vegetative MS2 phage involves the enzymic formation of modified precursors and their incorporation into RNA.  相似文献   

4.
The inactivation and the mutagenesis of lambda phage Cl 857 virR by O-methylhydroxylamine (OMHA) and O-delta-aminooxybuthylhydroxylamine (delta-HA) were studied. The inactivation of OMHA-treated phage was shown to be stronger in E. coli polA cells defective in DNA-polymerase I as compared to wild-type host E. coli W3350. In contrast delta-HA caused similar phage inactivation in these two strains. Wave-type kinetics of the inactivation and the mutagenesis of phage by OMHA and delta-HA was observed. delta-HA appeared to be a more effective mutagen than OMHA: it induced higher mutant yield at a given level of inactivation.  相似文献   

5.
Mutation fixation at an ethenocytosine (εC) residue borne on transfected M13 single-stranded DNA is significantly enhanced in response to pretreatment of Escherichia coli cells with UV, alkylating agents or hydrogen peroxide, a phenomenon that we have called UVM for UV modulation of mutagenesis. The UVM response does not require the E. coli SOS or adaptive responses, and is observed in cells defective for oxyR , an oxidative DNA damage-responsive regulatory gene. UVM may represent either a novel DNA-repair phenomenon, or an unrecognized feature of DNA replication in damaged cells that affects a specific class of non-coding DNA lesions. To explore the range of DNA lesions subject to the UVM effect, we have examined mutation fixation at 3, N  4-ethenocytosine and 1, N  6-ethenoadenine, as well as at O6-methylguanine (O6mG). M13 viral single-stranded DNA constructs bearing a single mutagenic lesion at a specific site were transfected into cells pretreated with UV or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG). Survival of transfected viral DNA was measured as transfection efficiency, and mutagenesis at the lesion site was analysed by a quantitative multiplex sequence analysis technology. The results suggest that the UVM effect modulates mutagenesis at the two etheno lesions, but does not appear to significantly affect mutagenesis at O6mG. Because the modulation of mutagenesis is observed in cells incapable of the SOS response, these data are consistent with the notion that UVM may represent a previously unrecognized DNA damage-inducible response that affects the fidelity of DNA replication at certain mutagenic lesions in Escherichia coli .  相似文献   

6.
This paper describes the results of treating plasmid DNA in vitro with mutagens, to obtain mutations both in plasmid genes and chromosomal genes comprised within the plasmid, thus avoiding disorganization characteristic of in vivo mutagenesis. The model system is represented by DNA of RSF2124 responsible for colicine E1 synthesis and resistance to ampicillin. Col- mutants were looked for after exposure to UV- and gamma-irradiation. The lethal effect was estimated as inactivation of the ampicillin resistance marker. After reisolation from mutant transformant of the plasmid DNA, the novel character and resistance to ampicillin proved to retain in the course of subsequent transformations and passages of transformed colonies, suggesting the mutational nature of the changes. Exposure of RSF2124 to short-wave UV-irradiation (lambda = 254 nm) produced a pronounced mutagenic effect: the relative quantity of Col- mutants under optimal conditions of mutagenesis increased about 10 times. In the case of W-reactivation (additional UV-irradiation of C600 wild type cells) of lethal lesions, a 95% reliable increase in mutagenic effect was observed. Significant enhancement of mutagenesis (about 4-fold) was detected when only recipient cells were exposed to low doses of UV (the so-called indirect UV mutagenesis). Thus, with regard to W- and indirect UV mutagenesis, the plasmid DNA behaves like DNA of temperate phages which suggests their evolutionary relationship. Treatment of plasmid DNA with acridine orange prior to UV, only protected from lethal lesions. Gamma-irradiation (60Co) at the dose producing 100-fold inactivation, increased the yield of Col- mutants by one order of magnitude. The presence of RSF2124 plasmid in a cell does not affect its UV sensitivity.  相似文献   

7.
Escherichia coli cells have multiple mutagenic pathways that are induced in response to environmental and physiological stimuli. Unlike the well-investigated classical SOS response, little is known about newly recognized pathways such as the UVM (UV modulation of mutagenesis) response. In this study, we compared the contributions of the SOS and UVM pathways on mutation fixation at two representative noninstructive DNA lesions: 3,N4-ethenocytosine (epsilonC) and abasic (AP) sites. Because both SOS and UVM responses are induced by DNA damage, and defined UVM-defective E. coli strains are not yet available, we first constructed strains in which expression of the SOS mutagenesis proteins UmuD' and UmuC (and also RecA in some cases) is uncoupled from DNA damage by being placed under the control of a heterologous lac-derived promoter. M13 single-stranded viral DNA bearing site-specific lesions was transfected into cells induced for the SOS or UVM pathway. Survival effects were determined from transfection efficiency, and mutation fixation at the lesion was analyzed by a quantitative multiplex sequence analysis procedure. Our results suggest that induction of the SOS pathway can independently elevate mutagenesis at both lesions, whereas the UVM pathway significantly elevates mutagenesis at epsilonC in an SOS-independent fashion and at AP sites in an SOS-dependent fashion. Although mutagenesis at epsilonC appears to be elevated by the induction of either the SOS or the UVM pathway, the mutational specificity profiles for epsilonC under SOS and UVM pathways are distinct. Interestingly, when both pathways are active, the UVM effect appears to predominate over the SOS effect on mutagenesis at epsilonC, but the total mutation frequency is significantly increased over that observed when each pathway is individually induced. These observations suggest that the UVM response affects mutagenesis not only at class 2 noninstructive lesions (epsilonC) but also at classical SOS-dependent (class 1) lesions such as AP sites. Our results add new layers of complexity to inducible mutagenic phenomena: DNA damage activates multiple pathways that have lesion-specific additive as well as suppressive effects on mutation fixation, and some of these pathways are not directly regulated by the SOS genetic network.  相似文献   

8.
Formaldehyde-induced mutagenesis: a novel mechanism for its action   总被引:3,自引:0,他引:3  
T Alderson 《Mutation research》1985,154(2):101-110
A novel and unique mechanism for formaldehyde-induced mutagenesis is described which is mediated by the formation of an N6-substituted adenine ribonucleoside analogue, N6-hydroxymethyl adenosine, after an in vitro reaction of formaldehyde with adenosine. This type of ribonucleoside analogue (the deoxyribose derivative is ineffective) exhibits a powerful and remarkable germ-cell-stage-specific mutagenic effect in male Drosophila larvae, apparently by interfering with DNA repair. Circumstantial evidence is presented which indicates that the analogue most probably acts by its utilisation in the synthesis of diadenosine tetraphosphate (Ap4A) to form an antimetabolite(s) of Ap4A which subsequently interferes with Ap4A-mediated intracellular events, amongst which an effect on DNA repair would appear to be its mutagenic mechanism of action.  相似文献   

9.
Intracellular development of DNA-containing cd phage in the presence of O-methylhydroxylamine (in vivo mutagenesis) results in 50-fold increase of mutants in the phage progeny. The main effect is due to the mutagen presence during replication of phage DNA (within 10-20 min after the infection). The presence of the mutagen both before and after DNA replication does not produce any considerable mutagenic effect. Comparison of the data obtained with kinetic reaction of O-methylhydroxylamine with nucleic acid components is due to enzymatic formation of modified precursors, N4-metoxycytidine and/or N6-metoxyadenosine derivatives, which have dual functional specificity, and to their incorporation into genome under DNA replication. The presence of O-methylhydroxylamine increases not only the number of mixed clones with a high content of mutants, but also the number of pure mutant clones. Recombinogenic activity of O-methylhydroxylamine is considered to be a possible cause of this effect.  相似文献   

10.
11.
To develop a simple, speedy, economical and widely applicable method for multiple-site mutagenesis, we have substantially modified the Quik-Change™ Site-Directed Mutagenesis Kit protocol (Stratagene, La Jolla, CA). Our new protocol consists of (i) a PCR reaction using an in vitro technique, LDA (ligation-during-amplification), (ii) a DpnI treatment to digest parental DNA and to make megaprimers and (iii) a synthesis of double-stranded plasmid DNA for bacterial transformation. While the Quik Change™ Kit protocol introduces mutations at a single site, requiring two complementary mutagenic oligonucleotides, our new protocol requires only one mutagenic oligonucleotide for a mutation site, and can introduce mutations in a plasmid at multiple sites simultaneously. A targeting efficiency >70% was consistently achieved for multiple-site mutagenesis. Furthermore, the new protocol allows random mutagenesis with degenerative primers, because it does not use two complementary primers. Our mutagenesis strategy was successfully used to alter the fluorescence properties of green fluorescent protein (GFP), creating a new-color GFP mutant, cyan-green fluorescent protein (CGFP). An eminent feature of CGFP is its remarkable stability in a wide pH range (pH 4–12). The use of CGFP would allow us to monitor protein localization quantitatively in acidic organelles in secretory pathways.  相似文献   

12.
Malondialdehyde (MDA), an in vivo metabolite of lipid peroxidation and prostaglandin biosynthesis, is mutagenic in Salmonella typhimurium. It is a reactive electrophile that can form interstrand cross-links in DNA. To explore the possibility that MDA-induced interstrand cross-links are the pre-mutagenic lesion, we have quantitated the ability of highly purified preparations of MDA to form interstrand cross-links when reacted with linear plasmid DNA. At physiological temperature and pH, MDA did not form DNA cross-links as determined by DNA denaturation followed by agarose gel electrophoresis. DNA cross-links were formed, however, when incubations with MDA were carried out at either pH 4.2 or temperatures exceeding 60 degrees. alpha-Methylmalondialdehyde (CH3MDA) was found to cross-link DNA more efficiently than MDA, but was not mutagenic in any tester strain of Salmonella. MDA polymers, formed by acid incubation of MDA, also were capable of inducing cross-links. However, an inverse relationship was observed between mutagenicity and extent of polymerization. The pattern of mutagenic response for MDA in different strains of Salmonella was compared with mitomycin C, an established mutagenic cross-linking agent. Error-prone repair and a UvrB+ phenotype, which are needed for the induction of mutations by mitomycin C, were not required for MDA mutagenesis. These findings, taken together, dissociate the mutagenicity of MDA from its ability to form interstrand cross-links with DNA.  相似文献   

13.
C Janion 《Mutation research》1978,56(3):225-234
N4-Hydroxycytidine, 5-methyl-N4-hydroxydeoxycytidine and 2-amino-N6-hydroxyadenine were tested for their mutagenic activity in S. typhimurium and E. coli cells. Reversion analysis of different markers was applied in a plate-test system, and 2-aminopurine was used as a reference mutagen. (i) 2-Amino-N6-hydroxyadenine was the most potent mutagen. In some cases it gave more than 1000 colonies of revertants per plate. (ii) N6-Hydroxycytidine was the least specific mutagen. Almost all the tested markers were inducible to revert by this analogue. (iii) The mutagenic specificity of 5-methyl-N4-hydroxydeoxycytidine seemed to be opposite to that of 2-aminopurine. This suggests that the former can induce transition of CG to TA. (iv) A comparison of the mutagenic actions of N4-hydroxycytidine and 5-methyl-N4-hydroxy-deoxycytidine showed that deoxyriboside analogues are not necessarily more efficient mutagens than ribonucleosides. (v) No purine or pyrimidine deficiency was needed for mutagenesis to occur for any of the mutagens investigated. (vi) The results on bacteria with different repair abilities suggest that base-analogue mutagenesis (except perhaps for BrdUrd) occurs mainly during replication of nucleic acids containing substituted nucleosides with bi-functional specificity.  相似文献   

14.
The effect of metabolic activation on the mutagenic potential of some phenanthridinium compounds was examined in Salmonella typhimurium strains TA1538 and TA1978 . All of the compounds tested were mutagenic in TA1538, a DNA excision-repair-deficient strain, when metabolizing enzymes were included in the assay. Reversions were not detected when these compounds were examined under the same conditions in TA1978 , the isogenic strain of TA1538 proficient in DNA repair. The mutagenic activity of an azido analog of propidium iodide was also examined using photoactivation and enzymatic activation, and with both conditions, reversions were observed in TA1538 but not in TA1978 . Furthermore, the ranking of mutagenic activity of propidium azide relative to ethidium azide analogs was comparable for both types of activation. The evidence from several studies suggests that the structural requirements for mutagenic activity for this series of phenanthridinium compounds appear to be the same whether mutagenesis is induced via photoactivation or metabolic activation. The interaction with DNA resulting in covalent alteration of the DNA is implicated as the mutagenic mechanism whether the active species is generated by metabolic- or photo-activation.  相似文献   

15.
A base substitution mutation (mutA) in the Escherichia coli glyV tRNA gene potentiates asp --> gly mistranslation and confers a strong mutator phenotype that is SOS independent, but requires recA, recB and recC genes. Here, we demonstrate that mutA cells express an error-prone DNA polymerase by using an in vitro experimental system based on the conversion of phage M13 single-stranded viral DNA bearing a model mutagenic lesion to the double-stranded replicative form. Amplification of the newly synthesized strand followed by multiplex DNA sequence analysis revealed that mutation fixation at 3, N4-ethenocytosine (varepsilonC) was approximately 3% when the DNA was replicated by normal cell extracts, approximately 48% when replicated by mutA cell extracts and approximately 3% when replicated by mutA recA double mutant cell extracts, in complete agreement with previous in vivo results. Mutagenesis at undamaged DNA sites was significantly elevated by mutA cell-free extracts in the M13 lacZ(alpha) forward mutagenesis system. Neither polA (DNA polymerase I) nor polB (DNA polymerase II) genes are required for the mutA phenotype, suggesting that the phenotype is mediated through a modification of DNA polymerase III or the activation of a previously unidentified DNA polymerase. These findings define the major features of a novel mutagenic pathway and imply the existence of previously unrecognized links between translation, recombination and replication.  相似文献   

16.
DNA polymerase eta synthesizes DNA in vitro with low fidelity. Based on this, here we report the effects of deletion or increased expression of yeast RAD30 gene, encoding for polymerase eta (Pol eta), on spontaneous mutagenesis in vivo. Deletion of RAD30 did not affect spontaneous mutagenesis. Overproduction of Rad30p was slightly mutagenic in a wild-type yeast strain and moderately mutagenic in strains with inactive 3'-->5'-exonuclease of DNA polymerase epsilon or DNA mismatch repair. These data suggest that excess Rad30p reduces replication fidelity in vivo and that the induced errors may be corrected by exonucleolytic proofreading and DNA mismatch repair. However, the magnitude of mutator effect (only up to 10-fold) suggests that the replication fork is protected from inaccurate synthesis by Pol eta in the absence of DNA damage. Overproduction of catalytically inactive Rad30p was also mutagenic, suggesting that much of the mutator effect results from indirect perturbation of replication rather than from direct misincorporation by Pol eta. Moreover, while excess wild-type Pol eta primarily induced base substitutions in the msh6 and pms1 strains, excess inactive Rad30p induced both base substitutions and frameshifts. This suggests that more than one mutagenic mechanism is operating when RAD30 is overexpressed.  相似文献   

17.
Aqueous solution of glucose and glycine was heated under reflux for 4 h and extracted with ethyl acetate. Reversed phase HPLC of the extract revealed a new DNA strand-breaking substance, which was purified by repeated HPLC and identified as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). DDMP induced DNA strand breaking in a dose- and time-dependent manner. It was active to break DNA strands at pH 7.4 and 9.4. Its pyranone skeleton was destroyed at the pH values. DNA strand breaking by DDMP was inhibited by superoxide dismutase, catalase, scavengers for hydroxyl radical, spin trapping agents and metal chelators, and the breaking was enhanced by Fe(III) ion. A mixture of DDMP and a spin trap DMPO gave electron spin resonance signals of a spin adduct DMPO-OH, indicating generation of hydroxyl radical. DDMP was found to be mutagenic to Salmonella typhimurium TA100 without metabolic activation. These results show DDMP generated active oxygen species to cause DNA strand breaking and mutagenesis.  相似文献   

18.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

19.
Induction of c-mutations in extracellular bacteriophage and prophage lambda cI857 ind-treated with 1 M O-methylhydroxylamine (OMHA) at 32 degrees and pH 5.6 has been studied. The frequency of c-mutations increases proportionally to the time of treatment of extracellular phage and does not depend on cellular recA+ or polA+ functions and on induction of SOS-repair system caused by UV-irradiation of host cells. Prophage is inactivated and mutagenized approximately 10-fold faster than extracellular phage immediately after treatment of lysogenic cells during prophage induction. Thus, prophage survival does not depend on repair functions of the host cells, and the frequency of c-mutations in recA and, especially, in polA lysogens is significantly lower, than in the wild-type cells.Delayed thermoinduction (90 min) of prophage causes significant enhancement of survival and decreases the frequency of c-mutations in all strains studied. Preliminary treatment of non-lysogens with OMHA does not increase the frequency of c-mutations in undamaged phage or in phage treated with OMHA in vitro.  相似文献   

20.
F Bourre  A Benoit    A Sarasin 《Journal of virology》1989,63(11):4520-4524
UV light induces DNA lesions which are mutagenic in mammalian cells. We used simian virus 40 tsB201 (unable to produce viral capsid at the restrictive temperature of 41 degrees C because of a point mutation in the VP1 gene) to analyze the mutagenic potency of the two major UV-induced lesions, pyrimidine dimers (Py-Py) and pyrimidine (6-4) pyrimidones [Py(6-4)Py], which are formed on the same nucleotide sites. The mutagenesis criterion was the reversion toward a wild-type growth phenotype. After UV irradiation (mainly at 254 nm), part of the DNA was treated with the photoreactivating enzyme of Escherichia coli, which monomerizes Py-Py but does not modify the Py(6-4)Py photoproduct. Higher survival and lower mutation frequency rates for the photoreactivated DNA indicated that the two lesions were lethal and mutagenic. The VP1 gene of some mutants was entirely sequenced. The mutation spectra showed that the two lesions did not induce the same mutation hot spots, although some sites were common to both. The induced mutation hot spots were not only correlated with lesion hot spots but seemed partially directed by local DNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号