首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important step toward understanding the molecular basis of the functional diversity of pacemaker currents in spontaneously active cells has been the identification of a gene family encoding hyperpolarization-activated cyclic nucleotide-sensitive cation nonselective (HCN) channels. Three of the four gene products that have been expressed so far give rise to pacemaker channels with distinct activation kinetics and are differentially distributed among the brain, with considerable overlap between some isoforms. This raises the possibility that HCN channels may coassemble to form heteromeric channels in some areas, similar to other K(+) channels. In this study, we have provided evidence for functional heteromerization of HCN1 and HCN2 channels using a concatenated cDNA construct encoding two connected subunits. We have observed that heteromeric channels activate several-fold faster than HCN2 and only a little slower than HCN1. Furthermore, the voltage dependence of activation is more similar to HCN2, whereas the cAMP sensitivity is intermediate between HCN1 and HCN2. This phenotype shows marked similarity to the current arising from coexpressed HCN1 and HCN2 subunits in oocytes and the native pacemaker current in CA1 pyramidal neurons. We suggest that heteromerization may increase the functional diversity beyond the levels expected from the number of HCN channel genes and their differential distribution.  相似文献   

2.
Functional expression of the human HCN3 channel   总被引:9,自引:0,他引:9  
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels underlie the inward pacemaker current, termed I(f)/I(h), in a variety of tissues. Many details are known for the HCN subtypes 1, 2, and 4. We now successfully cloned the cDNA for HCN3 from human brain and compared the electrophysiological properties of hHCN3 to the other three HCN subtypes. Overexpression of human HCN3 channels in HEK293 cells resulted in a functional channel protein. Similar to hHCN2 channels, hHCN3 channels are activated with a rather slow time constant of 1244 +/- 526 ms at -100 mV, which is a greater time constant than that of HCN1 but a smaller one than that of HCN4 channels. The membrane potential for half-maximal activation V((1/2)) was -77 +/- 5.4 mV, and the reversal potential E(rev) was -20.5 +/- 4 mV, resulting in a permeability ratio P(Na)/P(K) of 0.3. Like all other HCNs, hHCN3 was inhibited rapidly and reversibly by extracellular cesium and slowly and irreversibly by extracellular applied ZD7288. Surprisingly, the human HCN3 channel was not modulated by intracellular cAMP, a hallmark of the other known HCN channels. Sequence comparison revealed >80% homology of the transmembrane segments, the pore region, and the cyclic nucleotide binding domain of hHCN3 with the other HCN channels. The missing response to cAMP distinguishes human HCN3 from both the well cAMP responding HCN subtypes 2 and 4 and the weak responding subtype 1.  相似文献   

3.
Cardiac pacemaking is produced by the slow diastolic depolarization phase of the action potential. The hyperpolarization-activated cation current (If) forms an important part of the pacemaker depolarization and consists of two kinetic components (fast and slow). Recently, three full-length cDNAs encoding hyperpolarization-activated and cyclic nucleotide-gated cation channels (HCN1-3) have been cloned from mouse brain. To elucidate the molecular identity of cardiac pacemaker channels, we screened a human heart cDNA library using a highly conserved neuronal HCN channel segment and identified two cDNAs encoding HCN channels. The hHCN2 cDNA codes for a protein of 889 amino acids. The HCN2 gene is localized on human chromosome 19p13.3 and contains eight exons spanning approximately 27 kb. The second cDNA, designated hHCN4, codes for a protein of 1203 amino acids. Northern blot and PCR analyses showed that both hHCN2 and hHCN4 are expressed in heart ventricle and atrium. When expressed in HEK 293 cells, either cDNA gives rise to hyperpolarization-activated cation currents with the hallmark features of native If. hHCN2 and hHCN4 currents differ profoundly from each other in their activation kinetics, being fast and slow, respectively. We thus conclude that hHCN2 and hHCN4 may underlie the fast and slow component of cardiac If, respectively.  相似文献   

4.
Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC(50) value of ~30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ~0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes.  相似文献   

5.
6.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.  相似文献   

7.
Pacemaker channels produce an instantaneous current.   总被引:8,自引:0,他引:8  
Spontaneous rhythmic activity in mammalian heart and brain depends on pacemaker currents (I(h)), which are produced by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here, we report that the mouse HCN2 pacemaker channel isoform also produced a large instantaneous current (I(inst(HCN2))) in addition to the well characterized, slowly activating I(h). I(inst(HCN2)) was specific to expression of HCN2 on the plasma membrane and its amplitude was correlated with that of I(h). The two currents had similar reversal potentials, and both were modulated by changes in intracellular Cl(-) and cAMP. A mutation in the S4 domain of HCN2 (S306Q) decreased I(h) but did not alter I(inst(HCN2)), and instantaneous currents in cells expressing either wild type HCN2 or mutant S306Q channels were insensitive to block by Cs(+). Co-expression of HCN2 with the accessory subunit, MiRP1, decreased I(h) and increased I(inst(HCN2)), suggesting a mechanism for modulation of both currents in vivo. These data suggest that expression of HCN channels may be accompanied by a background conductance in native tissues and are consistent with at least two open states of HCN channels: I(inst(HCN2)) is produced by a Cs(+)-open state; hyperpolarization produces an additional Cs(+)-sensitive open state, which results in I(h).  相似文献   

8.
In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.  相似文献   

9.
The pacemaker current I(f) of the sinoatrial node (SAN) is a major determinant of cardiac diastolic depolarization and plays a key role in controlling heart rate and its modulation by neurotransmitters. Substantial expression of two different mRNAs (HCN4, HCN1) of the family of pacemaker channels (HCN) is found in rabbit SAN, suggesting that the native channels may be formed by different isoforms. Here we report the cloning and heterologous expression of HCN1 from rabbit SAN and its specific localization in pacemaker myocytes. rbHCN1 is an 822-amino acid protein that, in human embryonic kidney 293 cells, displayed electrophysiological properties similar to those of I(f), suggesting that HCN1 can form a pacemaker channel. The presence of HCN1 in the SAN myocytes but not in nearby heart regions, and the electrophysiological properties of the channels formed by it, suggest that HCN1 plays a central and specific role in the formation of SAN pacemaker currents.  相似文献   

10.
MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes   总被引:19,自引:0,他引:19  
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function. To evaluate the effect of MiRP1 on HCN expression and function in a physiological context, we used an adenovirus approach to overexpress a hemagglutinin (HA)-tagged MiRP1 (HAMiRP1) and HCN2 in neonatal rat ventricular myocytes, a cell type that expresses both MiRP1 and HCN2 message at low levels. HA-MiRP1 co-expression with HCN2 resulted in a 4-fold increase in maximal conductance of pacemaker currents compared with HCN2 expression alone. HCN2 activation and deactivation kinetics also changed, being significantly more rapid for voltages between -60 and -95 mV when HA-MiRP1 was co-expressed with HCN2. However, the voltage dependence of activation was not affected. Co-immunoprecipitation experiments demonstrated that expressed HA-MiRP1 and HCN2, as well as endogenous MiRP1 and HCN2, co-assemble in ventricular myocytes. The results indicate that MiRP1 acts as a beta subunit for HCN2 pacemaker channel subunits and alters channel gating at physiologically relevant voltages in cardiac cells.  相似文献   

11.
Important targets for cAMP signalling in the heart are hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels that underlie the depolarizing 'pacemaker' current, I(f). We studied the role of I(f) in mice, in which binding of cAMP to HCN4 channels was abolished by a single amino-acid exchange (R669Q). Homozygous HCN4(R669Q/R669Q) mice die during embryonic development. Prior to E12, homozygous and heterozygous embryos display reduced heart rates and show no or attenuated responses to catecholaminergic stimulation. Adult heterozygous mice display normal heart rates at rest and during exercise. However, following beta-adrenergic stimulation, hearts exhibit pauses and sino-atrial node block. Our results demonstrate that in the embryo, HCN4 is a true cardiac pacemaker and elevation of HCN4 channel activity by cAMP is essential for viability. In adult mice, an important function of HCN4 channels is to prevent sinus pauses during and after stress while their role as a pacemaker of the murine heart is put into question. Most importantly, our results indicate that HCN4 channels can fulfil their physiological function only when cAMP is bound.  相似文献   

12.
13.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) "pacemaker" channel subunits are integral membrane proteins that assemble as tetramers to form channels in cardiac conduction tissue and nerve cells. Previous studies have suggested that the HCN2 and HCN4 channel isoforms physically interact when overexpressed in mammalian cells, but whether they are able to co-assemble and form functional channels remains unclear. The extent to which co-assembly occurs over self-assembly and whether HCN2-HCN4 heteromeric channels are formed in native tissue are not known. In this study, we show co-assembly of HCN2 and HCN4 in live Chinese hamster ovary cells using bioluminescence resonance energy transfer (BRET(2)), a novel approach for studying tetramerization of ion channel subunits. Together with results from electrophysiological and imaging approaches, the BRET(2) data show that HCN2 and HCN4 subunits self-assemble and co-assemble with equal preference. We also demonstrate colocalization of HCN2 and HCN4 and a positive correlation of their intensities in the embryonic mouse heart using immunohistochemistry, as well as physical interactions between these isoforms in the rat thalamus by coimmunoprecipitation. Together, these data support the formation of HCN2-HCN4 heteromeric channels in native tissue.  相似文献   

14.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels control the rhythmic activity of heart and neuronal networks. The activation of these channels is regulated in a complex manner by hormones and neurotransmitters. In addition it was suggested that the channels may be controlled by the pH of the cytosol. Here we demonstrate that HCN2, a member of the HCN channel family, is directly modulated by the intracellular pH in the physiological range. Protons inhibit HCN2 channels by shifting the voltage dependence of channel activation to more negative voltages. By using site-directed mutagenesis, we have identified a single histidine residue (His-321) localized at the boundary between the voltage-sensing S4 helix and the cytoplasmic S4-S5 linker of the channel that is a major determinant of pH sensitivity. Replacement of His-321 by either arginine, glutamine, or glutamate results in channels that are no longer sensitive to shifts in intracellular pH. In contrast, cAMP-mediated modulation is completely intact in mutant channels indicating that His-321 is not involved in the molecular mechanism that controls modulation of HCN channel activity by cyclic nucleotides. Because His-321 is conserved in all four HCN channels known so far, regulation by intracellular pH is likely to constitute a general feature of both cardiac and neuronal pacemaker channels.  相似文献   

15.
16.
Genetically engineered pacemakers could be a possible alternative to implantable electronic devices for the treatment of bradyarrhythmias. The strategies include upregulation of beta adrenergic receptors, conversion of myocytes into pacemaker cells and stem cell therapy. Pacemaker activity in adult ventricular myocytes is normally repressed by the inward rectifier potassium current (I(K1)). The I(K1) current is encoded by the Kir2 gene family. Use of a negative construct that suppresses current when expressed with wild-type Kir2.1 is an experimental approach for genesis of genetic pacemaker. Hyperpolarisation activated cyclic nucleotide gated (HCN) channels which generate If current, the pacemaker current of heart can be delivered to heart by using stem cell therapy approach and viral vectors. The unresolved issues include longevity and stability of pacemaker genes, limitations involved in adenoviral and stem cell therapy and creation of genetic pacemakers which can compete with the electronic units.  相似文献   

17.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

18.
Pacemaker channels are formed by co-assembly of hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits. Previously, we suggested that the NH(2) termini of the mouse HCN2 isoform were important for subunit co-assembly and functional channel expression. Using an alignment strategy together with yeast two-hybrid assays, patch clamp electrophysiology, and confocal imaging, we have now identified a domain within the NH(2) terminus of the HCN2 subunit that is responsible for interactions between NH(2) termini and promoting the trafficking of functional channels to the plasma membrane. This domain is composed of 52 amino acids, is located adjacent to the putative first transmembrane segment, and is highly conserved among the mammalian HCN isoforms. This conserved domain, but not the remaining unconserved NH(2)-terminal regions of HCN2, specifically interacted with itself in yeast two-hybrid assays. Moreover, the conserved domain was important for expression of currents. Whereas relatively normal whole cell HCN2 currents were produced by channels containing only the conserved domain, further deletion of this region, leaving only a more polar and putative coiled-coil segment, eliminated HCN2 currents and resulted in proteins that localized predominantly in perinuclear compartments. Thus, we suggest that this conserved domain is the critical NH(2)-terminal determinant of subunit co-assembly and trafficking of pacemaker channels.  相似文献   

19.
20.

Background

Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (I f) flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and attenuation of the inward rectifier K+ current (I K1) flowing through inward rectifier potassium (Kir) channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs) and induced cardiomyocytes that originally show poor I K1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs) function as a biological pacemaker in vitro.

Methods and Results

The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of I K1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger I f currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded to ivabradine, an I f inhibitor, and to isoproterenol, a beta-adrenergic receptor agonist. Co-culture of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with aggregates composed of mESC-CMs resulted in synchronized contraction of the cells. The beating rate of hiPSC-CMs co-cultured with aggregates of HCN4-overexpressing mESC-CMs was significantly higher than that of non-treated hiPSC-CMs and that of hiPSC-CMs co-cultured with aggregates of non-overexpressing mESC-CMs.

Conclusions

We generated HCN4-overexpresssing mESC-CMs expressing genes required for impulse conduction, showing rapid spontaneous beating, responding to an I f inhibitor and beta-adrenergic receptor agonist, and having pacing ability in an in vitro co-culture system with other excitable cells. The results indicated that these cells could be applied to a biological pacemaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号