首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the central nervous system (CNS) in the antiarrhythmic effects of prostaglandins (PGs) E2, F2 alpha, and I2 was studied by administering each agent into the left lateral cerebral ventricle (i.c.v. administration) of chloralose-anaesthetized cats. The cardiac arrhythmias were produced by intravenous (i.v.) infusion of ouabain (1 microgram/kg/min). The PGs E2, F2 alpha and I2 on i.c.v. administration in the dose range of 1 ng to 10 micrograms failed to inhibit ouabain-induced cardiac arrhythmias. However, when infused i.v., PGE2 (1 microgram/kg/min), PGF2 alpha (5 micrograms/kg/min), and PGI2 (2 micrograms/kg/min) effectively suppressed these arrhythmias. The standard antiarrhythmic drug propranolol (0.5-8.0 mg) on i.c.v. administration also significantly reduced the ouabain-induced cardiac arrhythmias. It is suggested that the CNS is not the site of action of PGs E2, F2 alpha, and I2 in antagonising the ouabain-induced cardiotoxicity in cats.  相似文献   

2.
K Kondo  T Okuno  T Saruta  E Kato 《Prostaglandins》1979,17(5):769-774
The effects of intraventricularly administered prostaglandins I2 (PGI2), E2 (PGE2), F2alpha (PGF2 alpha) and indomethacin on systemic blood pressure were investigated in conscious rats. PGI2 (1.25--10 micrograms/kg) decreased blood pressure in a dose-related manner, whereas PGE2 (100--1000 mg/kg) dose-dependently increased blood pressure. Both PGF2 alpha (0.31--20 micrograms/kg) and indomethacin (0.625--40 micrograms/kg) had no effects on blood pressure. These results indicate that intraventricular injection of PGI2 or PGE2 can induce significant changes in blood pressure, while endogenous prostaglandins synthesized in the brain seem to play a minor role in direct regulation of systemic blood pressure in the rat.  相似文献   

3.
Vasodilating prostaglandins were injected, in bolus doses, into the lower abdominal aorta or left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were monitored continuously. 6-Keto PGF1 alpha had no effect on either vascular bed in doses up to 100 micrograms. PGE2 was more potent than PGI2 in dilating hindlimb vasculature and PGE2 induced a more persistent hyperaemia whereas PGD2 elicited a biphasic response (constriction-dilation). PGE1, PGE2, PGD2 and PGI2 all produced dose-dependent vasodilation, the order of potency being PGD2 greater than PGI2 greater than PGE1 greater than or equal to PGE2. The effect of PGI2 was more transient and PGE1 and PGD2 caused small but consistent decreases in MAP and HR, respectively.  相似文献   

4.
Prostacyclin (PGI2) is metabolized to 6-keto-prostaglandin E1 (6-keto-PGE1) which is more stable yet equipotent to PGI2 in lowering systemic arterial blood pressure in the dog. In this study, partial hepatectomy was performed to determine the role of the liver in the vasodepressor response to both intravenously administered PGI2 and 6-keto-PGE1. The magnitude and the duration of systemic hypotensive responses were measured in hepatectomized and sham-operated male Wistar rats following less than maximal, equidepressor doses of PGI2 (0.3 microgram/kg), 6-keto-PGE1 (1.0 microgram/kg), and also PGE1 (3.0 micrograms/kg) and PGE2 (3.0 micrograms/kg). Hepatectomy did not significantly alter the magnitude of the systemic hypotensive response to any of the prostaglandins tested. This indicates that the liver and hepatic circulation do not contribute significantly to the hypotensive effect of these prostaglandins by alterations of systemic vascular resistance, venous pooling of blood, or the generation of additional vasoactive metabolites as may be expected following administration of these prostaglandins. However, hepatectomy did significantly increase the duration of the hypotensive response to PGI2 and 6-keto-PGE1 but not PGE1 or PGE2. We conclude that in vivo, the liver has a more significant role in PGI2 and 6-keto-PGE1 inactivation than in the inactivation of PGE1 and PGE2 when administered intravenously. These results also support the relatively greater significance of the lung in the inactivation of PGE1 and PGE2 in vivo.  相似文献   

5.
In humans eicosapentaenoic acid can be converted to 3-series prostaglandins (PGF3 alpha, PGI3, and PGE3). Whether 3-series prostaglandins can protect the gastric mucosa from injury as effectively as their 2-series analogs is unknown. Therefore, we compared the protective effects of PGF3 alpha and PGF2 alpha against gross and microscopic gastric mucosal injury in rats. Animals received a subcutaneous injection of either PGF3 alpha or PGF2 alpha in doses ranging from 0 (vehicle) to 16.8 mumol/kg and 30 min later they received intragastric administration of 1 ml of absolute ethanol. Whether mucosal injury was assessed 60 min or 5 min after ethanol, PGF3 alpha was significantly less protective against ethanol-induced damage than PGF2 alpha. These findings indicate that the presence of a third double bond in the prostaglandin F molecule between carbons 17 and 18 markedly reduces the protective effects of this prostaglandin on the gastric mucosa.  相似文献   

6.
The cardiovascular effects of leukotriene (LT) C4 and prostaglandin (PG) I2 were compared in the unanesthetized American bullfrog, Rana catesbeiana. Bullfrogs were instrumented to measure mean arterial pressure, peak ventricular pressure, its derivative (VP + dP/dt), and heart rate. Two hours after recovery from anesthesia, intravenous injections of LTC4 or PGI2 were tested over a dose range from 0.003 to 3 micrograms/kg body weight (bw). Both eicosanoids decreased mean arterial pressure, systolic ventricular pressure, and its derivative (VP + dP/dt). The effects of LTC4 and PGI2 on all parameters were similar at doses below 3 micrograms/kg bw. However, at 3 micrograms/kg bw, LTC4 had more potent negative inotropic effects than PGI2. Both compounds increased heart rate at 0.3 microgram/kg bw, but at 3 micrograms/kg bw PGI2 caused greater increases than LTC4. The hypotensive and negative inotropic effects of LTC4 were blunted in animals pretreated with indomethacin (4 mg/kg bw) to prevent endogenous prostaglandin and thromboxane synthesis, whereas the cardiovascular effects of PGI2 were unaffected by the blockade. The data show that both eicosanoids have similar qualitative effects on blood pressure and cardiac performance. However, the effects of LTC4 may be partially mediated by release of endogenous cyclooxygenase products, possibly PGI2. These results suggest that the bullfrog, an animal with no coronary arteries, is a useful model for comparative studies of cardiac actions of eicosanoids which are independent of effects mediated by changes in coronary vascular resistance.  相似文献   

7.
American bullfrogs, Rana catesbeiana respond to prostaglandins with changes in heart rate and blood pressure. These studies compare responses of warm (22 degrees C) and cold acclimated (5 degrees C) bullfrogs to prostaglandins. Gas chromatographic analysis determined equivalent fatty acid profiles in total lipids of heart and artery tissue from warm and cold acclimated animals. Arachidonic acid was the fatty acid precursor found in greatest abundance in both groups. For cardiovascular experiments, bullfrogs were cannulated by using a T-cannula implanted in the right sciatic artery. In warm acclimated bullfrogs, preinfusion systemic arterial pressure (SAP) was 14.7 +/- 0.5 mm Hg, and heart rate was 33.0 +/- 1.7 beats/min. Cold acclimated bullfrogs had SAP values of 8.0 +/- 0.8 mm Hg, and heart rate was 6.9 +/- 0.3 beats/min. Arachidonic and eicosapentaenoic acid infusions (2,000 micrograms/kg body weight [bw]) were hypertensive in cold acclimated and hypotensive in warm acclimated animals. These effects were blocked by indomethacin (4 mg/kg bw). In both warm and cold acclimated bullfrogs, prostaglandin F2 alpha (3-100 micrograms/kg bw) was hypertensive, while prostaglandin I2 (0.03-3 micrograms/kg bw) was hypotensive, with both prostaglandins stimulating a greater absolute response in warm acclimated animals. In addition, both prostaglandins increased heart rate in warm but not in cold acclimated bullfrogs. The results suggest diminished cardiovascular sensitivity to prostaglandins at low environmental temperatures.  相似文献   

8.
In pulmonary microcirculation, using a new X-ray television system, we measured the effects of prostaglandin F2 alpha (PGF2 alpha) and prostacyclin on the internal diameter (ID), flow velocity, volume flow, and transit times of a contrast medium in small arteries (Ta) and veins (Tv) in anesthetized cats. The ID of the arteries and veins ranged from 100 to 500 micron. PGF2 alpha, 0.3, 1, and 3 micrograms/kg, predominantly decreased ID on the arterial side in a dose-dependent manner but increased flow velocity 27-62%. Consequently, volume flow was kept relatively constant. With PGF2 alpha, Ta and Tv were decreased 18-41% and 4-15%, respectively. Prostacyclin, 2 and 4 micrograms/kg, uniformly dilated the ID of small arteries 9-16% but did not change small veins. With prostacyclin, flow velocity was unchanged or decreased, whereas volume flow was increased significantly, 27-32%. No significant changes of Ta and Tv were observed in response to prostacyclin. When both prostaglandins, PGF2 alpha and prostacyclin, were administered, they canceled each other with respect to the ID of small pulmonary arteries. Prostacyclin also prevented the PGF2 alpha-induced vasoconstriction of the pulmonary venous microcirculation.  相似文献   

9.
Prostacyclin (PGI2) produces an antiarrhythmic effect on aconitine induced arrhythmias in rats. The ED50 of PGI2 was 0.7 microgram/kg and the maximum antiarrhythmic effect 54 per cent. The equi-effective doses of PGE2 and PGF2alpha were higher (ED50 of PGF2alpha = 1.2 microgram/kg, ED50 of PGE2 = 2.7 microgram/kg). However, PGF2alpha and PGE2 had a maximum antiarrhythmic effect of 80 per cent in this model.  相似文献   

10.
The 15-keto-metabolites of PGE2 and PGF2 alpha produced an antiarrhythmic effect on aconitine induced arrhythmias in rats. The ED50 values of these metabolites were approximately 2.0 micrograms/kg. The 13,14-dihydro-15-keto-metabolites of PGE2 and PGF2 alpha had no statistically significant antiarrhythmic effect. PGI2 (0.25-1.00 micrograms/kg) produced an antiarrhythmic effect between 15-54% (ED50 0.75 micrograms/kg), whereas 6-keto-PGF1 alpha, a metabolite of PGI2, showed no significant antiarrhythmic effect. The results suggest a participation of 15-keto-metabolites in the antiarrhythmic effects of PGE2 and PGF2 alpha.  相似文献   

11.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8-12 of the cycle) were treated for 24 h with PGE2 (0.001-1 microM) and PGF2alpha (0.001-1 microM). Prostaglandin E2 (1 microM) and PGF2alpha (1 microM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.  相似文献   

12.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p less than .01) at 0.5, 2, and 6 hours after treatment with 100 microgram PGF2alpha. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 microgram PGF2beta and 2 hours after treatment with 1 mg PGF2beta. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF2beta. The specific uptake of 3H-PGF2alpha in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 microgram PGF2alpha treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 microgram PGF2beta resulted in no change. Administration of 1 mg PGF2beta resulted in depressed 3H-PGF2alpha uptake at both 2 and 6 hours post-treatment. Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF2alpha specific uptake or serum progesterone 2 hours after 100 microgram treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF1alpha resulted in a complete lack of measurable 3H-PGF2alpha uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

13.
The effects of acetylsalicylic acid (ASA) and indomethacin (IND) on the epinephrine and oxytocin stimulated contractility and prostaglandin (6-keto-PGF1 alpha, PGF2 alpha) production of superfused myometrial strips from the pregnant human uterus at term are reported. Without preincubation in ASA or IND epinephrine dose-dependently (10 ng/ml to 1 microgram/ml) stimulated the contractility and significantly increased the PG-release of the myometrial strips. The epinephrine induced increase in contractility was correlated to a higher increase in PGF2a production and a decreased 6-keto-PGF1 alpha/PGF2 alpha ratio (5.4 to 1.8). Superfusion of oxytocin increased myometrial contractions and PGF2 alpha release according to dose (3-12 microU/ml). However, 6-keto-PGF1 alpha production was not affected by oxytocin. Myometrial strips preincubated with ASA (100 micrograms/ml) or IND (10 micrograms/ml) demonstrated little spontaneous activity and the PG production was below the detection limit of the RIA. The stimulating effect of epinephrine and oxytocin on the contractility and PGF2 alpha release of the myometrial strips was inhibited significantly. During continuous superfusion of the ASA and IND preincubated myometrial strips with Tyrode's solution the inhibitory effect on spontaneous, epinephrine-, and oxytocin-stimulated contractility and PGF2 alpha release gradually declined over a period of 2 hours. This decrease of the inhibitory effect was more significant in ASA preincubated specimens. Our results demonstrate that spontaneous, epinephrine-, and oxytocin-stimulated contractility and PG release of human myometrial strips can be inhibited by ASA and IND and that this inhibitory effect is reversible. Furthermore our results suggest that in pregnant human myometrium the inhibition of PGF2 alpha production by ASA and IND is more pronounced than that of 6-keto-PGF1 alpha (PGI2).  相似文献   

14.
A pressor response has been observed with propranolol, a nonselective beta-adrenoceptor antagonist, in animals given a nonselective alpha-adrenoceptor antagonist. This study investigates whether a pressor response to propranolol occurs in conscious unrestrained rats following a hypotensive response induced by phentolamine (nonselective alpha-antagonist), prazosin (selective alpha 1-antagonist) and (or) rauwolscine (selective alpha 2-antagonist), sodium nitroprusside (smooth muscle relaxant), or methacholine (muscarinic agonist). The rats were subjected to a continuous infusion of a hypotensive agent or normal saline followed by i.v. injection of propranolol. The infusion of phentolamine significantly decreased mean arterial pressure (MAP). Subsequent injection of propranolol restored MAP to the control level. Prazosin and rauwolscine each caused a small but not significant decrease in MAP which was reversed by propranolol. Concurrent infusions of prazosin and rauwolscine caused a significant decrease in MAP. Subsequent injection of propranolol caused a large pressor response which increased MAP to 20% above control MAP prior to the administration of drugs. Nitroprusside or methacholine each caused a significant decrease in MAP, but the hypotension was not antagonized by propranolol. The concurrent infusions of a low dose of nitroprusside and prazosin caused a significant decrease in MAP which was reversed by propranolol. The infusion of saline did not alter MAP, and propranolol did not cause a pressor response. It is concluded that propranolol antagonizes the hypotensive effect of an alpha-blocker but not that of sodium nitroprusside or methacholine. Our results suggest the presence of a specific interaction between alpha- and beta-antagonists.  相似文献   

15.
Prostaglandins as reducing agents: a model of adenylate cyclase activation?   总被引:1,自引:0,他引:1  
It has been suggested that adenylate cyclase activation involves reduction of a disulfide linkage. Prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), prostaglandin I2 (PGI2) and prostaglandin F2 alpha (PGF2 alpha) were tested for their ability to act as reducing agents with either cytochrome c, or the disulfide 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), the latter with a catalytic amount of ferric chloride. PGE1, PGE2, and PGI2 significantly reduced cytochrome c while PGF2 alpha did not. PGE1, PGE2 and PGI2 reduced DTNB while PGF2 alpha did not. The results are consistent with the postulate that prostaglandins which are effective in activating adenylate cyclase can act as reducing agents and might be involved in reductive activation of adenylate cyclase.  相似文献   

16.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

17.
Intracerebroventricular (ICV) injections of prostacyclin (PGI2) produced biphasic blood pressure responses consisting of an initial hypotensive phase followed by a sustained pressor phase in awake rats. Heart rate increased following such injections in either awake or anesthetized rats. PGI2, 1 microgram, produced biphasic responses and, 10 micrograms, purely vasodepressor responses in anesthetized rats, but abdominal sympathetic nerve firing recorded was consistently increased. Hypophysectomy did not affect the hypotensive phase of the responses. These results indicate that the initial hypotension can not be explained by centrally-induced changes in sympathetic nerve activity or vasopressin release, but may be due to peripheral effects of PGI2 leaking from the injection site.  相似文献   

18.
Prostaglandin F2 alpha (PGF2 alpha) is a well-known luteolytic factor in the rat corpus luteum. To investigate a possible luteal origin of PGF2 alpha, measurements of this prostaglandin were performed in different luteal tissues in vivo. Prostaglandin E2 (PGE2) and the stable metabolite of prostacyclin, 6-keto-PGF1 alpha, were assayed simultaneously. Corpora lutea of different ages from 57 pregnant and pseudopregnant rats (mated with sterile males) were rapidly excised, dissected in 0 degree C indomethacin solution, homogenized, and extracted for prostaglandins with solid-phase extraction cartridges. Prostaglandins were determined by radioimmunoassay. Plasma levels of progesterone and 20 alpha-dihydroprogesterone were also monitored. In the adult pseudopregnant rat model, luteolysis occurs at Day 13 +/- 1, and maximal levels of all three prostaglandins were detected on Day 13 of pseudopregnancy: 0.40 +/- 0.02, 2.6 +/- 0.29, and 1.76 +/- 0.24 pmol/mg protein (mean +/- SEM, n=7) for PGF2 alpha, PGE2, and 6-keto-PGF1 alpha respectively. In pregnant rats, on the corresponding day, levels were considerably lower: 0.15 +/- 0.02, 0.90 +/- 0.13, and 0.50 +/- 0.06 pmol/mg protein (mean +/- SEM, n=9, p less than 0.0001), respectively. Luteal levels in pregnant rats showed a continuous decline on Days 13 and 19 for all prostaglandins measured, whereas in pseudopregnant rats an increment of PGF2 alpha was noted between Days 7 and 13 and remained high on Day 19. PGE2 closely followed levels of PGF2 alpha, but at a 5- to 10-fold higher level. The coefficient of correlation between PGF2 alpha and PGE2 in the luteal compartment of both models was 0.87 (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
R Singh  M K Ticku 《Life sciences》1987,40(10):1017-1026
This study was conducted to investigate the effects of centrally administered baclofen on blood pressure and heart rate in conscious spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Administration of baclofen (1.0 microgram/kg) into the lateral cerebral ventricle (icv) produced an increase in mean arterial pressure (MAP) in both SHR and WKY rats. The increase in MAP was significantly lower in SHR (13 +/- 3 mmHg) when compared with WKY (27 +/- 5 mmHg). The changes in heart rate (HR) were variable, from no change to a very small increase and did not differ significantly between SHR and WKY rats. The ability of baclofen to interfere with baroreceptor reflexes was also tested in separate experiments. In SHR, icv injection of baclofen (1.0 microgram/kg) significantly suppressed the pressor response and bradycardia evoked by phenylephrine 3.0 micrograms/kg iv, whereas in WKY, the pressor and HR responses to similar injections of phenylephrine were not affected by icv baclofen. Similarly, baclofen treatment modified hypotensive response and reflex tachycardia induced by nitroprusside (10.0 micrograms/kg) iv in SHR but not in WKY rats. Administration of sympathetic ganglionic blocker hexamethonium (HEX; 25 mg/kg) iv produced an equivalent decrease in MAP between SHR and WKY following icv injection of baclofen (1.0 microgram/kg). These results suggest that the effects of baclofen on the baroreceptor reflexes in SHR may not be mediated by a change in peripheral sympathetic tone.  相似文献   

20.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号