首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
We have examined the effects of the substituted pyridazinone herbicide, 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)pyridazinone (BASF 13-338, Sandoz 9785), on the desaturation of linoleic acid (18:2) on different molecular species of monogalactosyldiacylglycerol (MGDG) and phosphatidylcholine (PC) in leaf tissue of Arabidopsis thaliana (L.) Heynh. Specific changes in lipid composition allowed identification of different substrates for desaturation of 18:2 to linolenic acid (18:3). 18:2/16:2 MGDG was desaturated in the chloroplast to form 18:3/16:3 MGDG. Levels of 18:3/16:3 MGDG were reduced by treatment with BASF 13-338, suggesting that both the formation of 18:3 at the sn-1 position, and the formation of 16:3 at the sn-2 position of 18:2/16:2 MGDG were inhibited by this compound. Kinetic studies using exogenously incorporated [14C] 18:1 indicated that 18:2/18:3 MGDG originated from an 18:2/18:3 diglyceride precursor derived from PC. The formation of 18:3 at the sn-1 position of 18:2/18:3 MGDG was also inhibited by BASF 13-338. In contrast the desaturation of 18:2 proposed to occur at the sn-2 position of PC outside the chloroplast, was not affected.  相似文献   

2.
Linolenic acid (C18:3) inhibited photosynthesis by intact spinachchloroplasts. This inhibition was due neither to a lack of NADPHin chloroplasts nor to a direct inhibition of the enzyme activitiesin the Calvin-Benson cycle. Linolenate inhibited CO2 fixationand oxygen evolution more effectively than NADP+ photoreductionbut did not inhibit the activity of several key enzymes of theCalvin cycle. Linolenate inhibited phosphate influx and 3-phosphoglyceraldehydeefflux across the chloroplast envelope. A hypothesis explainingthe inhibition of photosynthesis by linolenate is presented. 1 This work is part of a doctoral program which is carried outby L. Mv? Akamba in this laboratory. (Received October 14, 1978; )  相似文献   

3.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

4.
An exhaustive qualitative and quantitative profiling of the photosynthetic glycerolipids in three strains of the marine diatom Skeletonema sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. In the diatom thylakoid membrane, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) account for about 45–70% and 5–15% of the total membrane lipids, respectively. The anionic sulfoquinovosyldiacylglycerol (SQDG) as well as the likewise anionic phosphatidylglycerol (PG) contribute between 10–40% and 4–10% each. The predominant species of MGDG were those with C16:3/C16:3, C20:5/16:1, and C20:5/C16:3. Three main molecular species of DGDG contained C20:5/C16:1, C20:5/C16:2, and C16:1/C16:1. The major molecular species of SQDG were those containing combinations of C14:0/C14:0, C14:0/C16:0, C14:0/C16:1, and C14:0/C16:3. All the PG classes contained the C18:1/C18:1 as the main molecular species. Based on the fatty acid species in sn-2 position, it is indicated that MGDG and DGDG are biosynthesized through prokaryotic pathway exclusively within the chloroplast, whereas PG and SQDG have a typical mixed biosynthetic pathway (both prokaryotic pathway and eukaryotic pathways). The chemical characteristics of photosynthetic glycerolipids related with ecological physiology are discussed.  相似文献   

5.
Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves.  相似文献   

6.
Fatty acids in vesicular and leaf monogalactosyl diglycerides (MGDG) of citrus were studied. Vesicular MGDG contained front 94.4 to 97.3% C16, C16:1, C18:1, C18:2, and C18:3; whereas leaf MGDG contained ca 90% C18:3, 3% C16 and 1.8 to 9.5% C18:2. Species varied considerably in their percentages of vesicular C18:2, C18:3 and to a lesser degree, C16:1 and C18:1 fatty acids with lemons being the most distinctive. Branched fatty acids were present to the extent of 5.6% in vesicular and to only 0.1% in leaf MGDG.  相似文献   

7.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

8.
Algal preparations from Acetabularia crenulata were analyzed for their fatty acid composition to establish the suitability of this alga as a model to study fatty acid oxidation and oxylipin biosynthesis. The work was based on two goals. The first goal of this study was to determine the contribution of fatty acids from contaminating bacteria and how this influenced the total fatty acid composition of cell homogenates of A. crenulata collected in the wild as compared to specimens cultured in sterile conditions. The major fatty acids detected for both specimens were palmitic (C16:0), palmitoleic (C16:1n-7), oleic (C18:1n-9), linoleic (C18:2n-6), linolenic (C18:3n-3), and octadecatetraenoic acid (C18:4n-3). Significant amounts of odd-chain fatty acids common to bacteria were not detected in either sample. Furthermore, branched-chain fatty acids, typical bacterial biomarkers, were not detected in either sample. Data suggest that bacteria do not greatly contribute to the total fatty acid pool of A. crenulata. The second goal was to compare the fatty acid composition of cell homogenates with that of isolated chloroplasts. Comparatively speaking palmitoleic and octadecatetraenoic acid were found at significantly lower concentrations in the chloroplast whereas oleic and linolenic acid were found at significantly higher amounts in this organelle. Furthermore, the amount of hexadecatrienoic acid (C16:3), a fatty acid commonly esterified to monogalactosyldiacylglycerol (MGDG; lipid present at high concentrations inside the chloroplasts of algae), was present at very low concentrations in these plastids (0.7%). Typically green algal follow the "prokaryotic pathway" for MGDG biosynthesis where C18:3 is esterified at the sn-1 position of the glycerol backbone and C18:3 or C16:3 at the sn-2 position, making C16:3 a major fatty acid inside chloroplasts. Interestingly, our results suggest that chloroplasts of A. crenulata appear to follow the "eukaryotic pathway" for MGDG biosynthesis where C18:3 is both at the sn-1 and sn-2 position of MGDG. Taking into account the exceptions noted, the fatty acid composition for A. crenulata is similar to that reported for most chlorophytes.  相似文献   

9.
The biosynthesis of lipids in Cryptomonas strain CR-1 was studiedusing radioactive tracers. For studies of general aspects ofthe biosynthesis of lipids, the cells were labelled with [14C]NaHCO3or with [l,3-14]glycerol. In both cases, monogalactosyl diacylglycerol(MGDG) was the most heavily labelled lipid. Phosphatidylcholineand the alanine lipid DGTA were not labelled to specific activitiescomparable to those of MGDG and DGDG. It is improbable thatthe so-called "eukaryotic pathway", which has been suggestedas the pathway for the synthesis of " eukaryotic" molecularspecies of MGDG from PC in higher plants, is operative in Cryptomonascells which contain typical "eukaryotic" MGDG. The homoserinelipid DGTS was labelled to a significant level only in its polargroup. The C-3 and C-4 atoms of methionine, as well as the methylcarbon of methionine, were incorporated into both DGTS and DGTA,whereas the C-l carbon of methionine was incorporated uniquelyinto DGTS. Results of pulse-chase experiments with [3,4-14C]methionineand [methyl.-l4C]methionine suggest the conversion of DGTS toDGTA. (Received April 22, 1991; Accepted June 12, 1991)  相似文献   

10.
Synthesis of unsaturated monogalactosyldiacylglycerol (MGDG) was examined in a mutant of Arabidopsis thaliana (L.) Heynh. containing reduced levels of hexadecatrienoic (16:3) and linolenic (18:3) acids in leaf lipids. Molecular species composition and labeling kinetics following the incorporation of exogenous [14C]fatty acids suggest that at least two pathways and multiple substrates are involved in desaturation of linoleic acid (18:2) to 18:3 for production of unsaturated galactolipids. A reduction in 18:3/16:3 MGDG and an increase in 18:2/16:2 MGDG, together with labeling kinetics of these molecular species following the incorporation of exogenous [14C]12:0 fatty acids, suggests that a chloroplastic pathway for production of 18:3 at the sn-1 position of MGDG utilizes 18:2/16:2 MGDG as a substrate. This chloroplastic (prokaryotic) pathway is deficient in the mutant. When exogenous [14C]18:1 was supplied, a eukaryotic (cytoplasmic) pathway involving the desaturation of 18:2 to 18:3 on phosphatidylcholine serves as the source of 18:3 for the sn-2 position of MGDG. This eucaryotic pathway predominates in the mutant.  相似文献   

11.
G. Norton  J. F. Harris 《Planta》1975,123(2):163-174
Summary The growth and composition of siliquas and seeds of oilseed rape was followed over 12 weeks from shortly after anthesis to maturity. Each plant produced 220 siliquas, this number being constant throughout development. Seed numbers per siliqua fell from 19 to 9 by week 5 and declined to 7 at maturity. Hull1 and seed growth followed a sigmoid pattern, but were not in phase. Seed development could be divided into 3 phases: In Phase 1, seed weight was low and starch and ethanol soluble compounds accounted for 80% DM. Phase 2, seed growth increased and storage oil and proteins were deposited accounting for 40% and 20% DM respectively at the end of this stage. Starch, glucose and fructose were utilized in this process. Phase 3 was largely concerned with the deposition of oil and protein in fixed proportions. Seed weight more than doubled while DM composition remained constant. Sugars were transferred from the hull to the seed to support this growth.The proportion of hull lipids remained constant throughout development until shortly before maturity when MGDG and DGDG fell due to chloroplast breakdown as indicated by chlorophyll disappearance. The FA composition of the hull lipids resembled that of photosynthetic tissue. In the seeds, the neutral lipids increased from 20% of the total lipids in Phase 1 to 93% at maturity. The proportion of structural lipids declined as the storage lipids increased. In Phase 1 the FA composition of the lipid resembled that of photosynthetic tissue (high in C16:0; C18:2; C18:3). In Phase 2, FA typical of storage triglycerides (C20:1; C22:1, appeared, C18:1 transitorily increased, but C18:2 and C18:3 fell dramatically. In Phase 3, the content of C22:1 continued to rise, but the proportions of the other FA remained constant.Abbreviations DM Dry matter - MGDG Monogalactosyldiglyceride - DGDG Digalactosyldiglyceride - NL Neutral lipid - PC Phosphatidyl choline - PE Phosphatidyl ethanolamine - C16:0 Palmitic acid - C18:1 Oleic acid - C18:2 Linoleic acid - C18:3 Linolenic acid - C20:1 Eicosenoic acid - C22:1 Erucic acid - FA Fatty acid  相似文献   

12.
Membrane lipids and fatty acids of Ochromonas danica were analyzed.Of the two betaine lipids, the homoserine lipid DGTS mainlycontains 14:0 and 18:2 fatty acids, while the alanine lipidDGTA is enriched in 18:0, 18:2 and 22:5 fatty acids. Of thepolar moiety of DGTA, improved NMR data are presented. On incubationof cells with [3,4-14C]methionine, DGTS as well as DGTA werelabelled. With [1-14C]methionine as a substrate, the label appearedin DGTS only. If double labelled [3H](glycerol)/[14C](polarpart)DGTS was used as a precursor, radioactivity was incorporatedspecifically into DGTA in which the isotope ratio was unchangedcompared to the precursor. Thus, the glyceryltrimethylhomoserinepart of DGTS acts as the precursor of the polar group of DGTA.Labelling of cells with [1-14C]oleate in a pulse-chase mannerand subsequent analysis of the label in the fatty acids andmolecular species of different lipids including DGTS and DGTA,suggested a clearly different role of the two betaine lipids:DGTS acts as a i) primary acceptor for exogenous C18 monoeneacid, ii) substrate for the desaturation of 18:1 to 18:2 acid,and iii) donor of mainly 18:2 fatty acid to be distributed amongPE and other membrane lipids. Into DGTA, in contrast, fattyacids are introduced only after elongation and desaturation.As a result, the biosynthesis of DGTA from DGTS involves a decarboxylationand recarboxylation of the polar part and a simultaneous deacylationand reacylation of the glycerol moiety. (Received January 28, 1992; Accepted March 11, 1992)  相似文献   

13.
When microsomes containing phosphatidylcholine labelled with[1-14C]-linoleate were incubated with pea or spinach chloroplasts,active transfer of this phospholipid took place in the presenceof phospholipid transfer protein. This transfer also was demonstratedby incubating unlabelled microsomes, chloroplasts and the phospholipidtransfer protein in the presence of [1-14C]-acetate. The reconstitutedsystems could synthesize fatty acids which were acylated inmicrosomal phosphatidylcholine. The transfer of this phospholipidto chloroplasts is mediated by the transfer protein. Our resultssuggest a role for phospholipid transfer protein in the synthesisof chloroplast lipids. (Received October 25, 1983; Accepted July 18, 1984)  相似文献   

14.
The effect of the substituted pyridazinone herbicides, Sandoz9785 and Sandoz 6706, on lipid metabolism was studied in greeningbarley leaves. The herbicides had no effect on chlorophyll formationbut caused an altered chloroplast morphology during greening.In leaves supplied with {14C} acetate, Sandoz 9785 decreasedincorporation of radioactivity into linolenate while Sandoz6706 decreased incorporation into both linolenate and trans-3-hexadecenoate.Decreased linolenate labelling was accompanied by an accumulationof {14C}linolenate in diacylgalactosylglycerol. {14C}Palmitateaccumulated in phosphatidylglycerol when synthesis of trans-3-hexadecenoatewas inhibited. The results are discussed in relation to thefunction of acyl lipids in fatty acid desaturation and the roleof lipids in chloroplast morphology. Key words: Chloroplast structure, Lipid synthesis, Substituted pyridazinones, Fatty acid desaturation  相似文献   

15.
The molecular species composition of diacylglycerol precursorsof monogalactosyldiacyl-glycerol (MGDG) from a variety of agriculturallyimportant plant species have been determined using in vivo 14C-tracertechniques. Analysis of 16:3-plants shows distinct similaritiesbetween different species and the data support the theory oftwo separate pathways for the biosynthesis of 16C/18C and 18C/18Cmolecular species of MGDG. The analyses of 18:3-plants confirmthat the DAG precursors of MGDG in these species are highlyunsaturated containing mainly linoleic (18:2) and linolenicacid (18:3). They also show some important variations betweenspecies. (Received February 19, 1988; Accepted May 11, 1988)  相似文献   

16.
Diatoms are one of the largest groups of primary producers in the oceans, yet despite their environmental importance little is known about their plastidial lipid biochemistry. It has been previously reported that Skeletonema species contain primarily C16/C16 and C20/C16 forms of mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively). Likewise, it was also reported that Phaeodactylum tricornutum contains primarily C16/C16 and C20/C20 forms of MGDG and DGDG. We seek to relate their studies to other diatoms, both in the centrics and pennates, with particular focus on the marennine‐producing pennate diatom, Haslea ostrearia. To this end, the composition and positional distribution of fatty acids of MGDG and DGDG were examined using positive‐ion electrospray ionization/mass spectrometry (ESI/MS). Two centric diatoms, Skeletonema marinoi and Thalassiosira weissflogii, and the pennate diatom, P. tricornutum, contained primarily C20/C16 (sn‐1/sn‐2) and C18/C16 forms of MGDG and DGDG. The other pennate diatoms, H. ostrearia and Navicula perminuta, contained primarily C18/C16 or C18/C18 forms of MGDG and DGDG, indicating a previously unrecognized fatty acid diversity in diatom MGDG and DGDG.  相似文献   

17.
ABSTRACT

There is a dearth of surveys examining the direct effects of temperature on red algal galactolipids, and none which examine regiochemistry modulation with respect to growth temperature. Therefore, forms of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two most commonly found galactolipids in chloroplast membranes, were determined in two model red algae, Polysiphonia sp. and Porphyridium sp., via positive-ion electrospray ionization/mass spectrometry (ESI/MS) and ESI/MS/MS. We sought to compare modulation of galactolipid forms in response to growth temperature between these two red algae and selected descendants with red algal plastid ancestry, and have proposed the following hypothesis: Polysiphonia sp. and Porphyridium sp. would modulate desaturations in the sn-2 position in accordance with previously examined descendant organisms. It was observed that both red algae produced C20/C16 (sn-1/sn-2 regiochemistry) and C20/C20 forms of MGDG and DGDG as their most abundant galactolipids under two growth temperatures, 20°C and 30°C. Furthermore, temperature-induced modulation of the major forms of MGDG and DGDG was more complex than what has been observed previously in selected representatives of red algal plastid ancestry. Porphyridium sp. modulated levels of desaturation in the sn-1 position of C20/C16 forms of MGDG and DGDG and in the sn-1 and sn-2 positions of C20/C20 forms of MGDG and DGDG. Polysiphonia sp. displayed trends suggesting it modulates levels of desaturation in the sn-1 and sn-2 positions of C20/C20 forms of MGDG and DGDG, thus indicating a different approach to regulating plastid membrane fluidity from that which has been observed in algae with secondary, red algae-derived plastids.  相似文献   

18.
The lipid metabolism of the marine brown alga D. membranaceawas investigated using [2–14C]acetate, [1–14C]myristate,[l–I4C]oleate and [l–14C]arachidonate as precursors.On incubation with [2–14C]acetate, 18:1 and 16:0 werethe main products formed by de novo synthesis and incorporatedinto polar lipids. With all the exogenous substrates used, DGTAwas strongly labelled and the subsequent rapid turnover of radioactivitysuggested a key role for this lipid in the redistribution ofacyl chains and most likely also in the biosynthesis of theeukaryotic galacto-lipids produced in the absence of PC. Inthe glycolipids a continuous accumulation of radioactivity wasobserved with all the substrates used. The labelling kineticsof molecular species of MGDG suggested the desaturation of 18:1to 18:4 and of 20:4 (n-6) to 20:5 (n–3) acids on thislipid. Both PG and PE were primary acceptors of de novo synthesizedfatty acids and exogenous [l–14C]oleate, but no evidenceexists for a further processing of acyl chains on these lipids.TAG, although strongly labelled with all exogenous [l–14CJacids,was not labelled when [2–14C]acetate was used as a precursorindicating the flux of endogenous fatty acids to be differentof that of exogenously supplied fatty acids. (Received November 4, 1997; Accepted February 23, 1998)  相似文献   

19.
The substrate specificities and selectivities of acyl-CoA synthetasesfrom maturing oilseeds were investigated to reveal fatty acidstructures that the enzymes recognize. The synthetases fromrapeseed (Brassica nap us) and castor bean (Ricinus communis)activated palmitic acid 16:0 most rapidly among the saturatedfatty acids tested. Native unsat-urated fatty acids, oleic 18:1cis-9, linoleic 18:2 cis-9,12 and linolenic acid 18:3 m-9,12,15,were all effectively utilized. Palmitoleic acid 16:1 cis-9 wasalso a good substrate, while myristoleic acid 14:1 cis-9 wasa poor substrate. The activation of erucic acid 22:1 cis-13was very slow. Elaidic acid 18:1 trans-9 was utilized at ratessimilar to those of the cis isomer. The efficiencies of petroselinicacid 18:1 cis-6 were half the efficiencies of oleic acid, whilethe rates of activation of m-vaccenic acid 18:1 cw-11 were comparableto those for oleic acid. These findings suggest that acyl-CoAsynthetases of oilseeds producing long-chain fatty acids strictlyrecognize the molecular structures of fatty acids, i.e., thecarbon-chain length between C16-C18 and the position of thefirst double bond (  相似文献   

20.
B. D. Whitaker 《Planta》1986,169(3):313-319
The fatty-acid composition of polar lipids from fruit and leaf chloroplasts was compared in five Solanaceous and two cucurbit species. The acylated fatty acids in monogalactosyl diglycerides (MGDG) from leaf chloroplasts of all five Solanaceous species included substantial amounts of 7,10,13-hexadecatrienoic acid (16:3). In contrast, the MGDG from fruit chloroplasts of the Solanaceae contained very little of this plastid-specific polyunsaturate, and instead included a proportionately greater percentage of linoleic acid (18:2). In MGDG from leaf chloroplasts of two cucurbits, -linolenic acid (18:3) constituted 94–95% of the acylated fatty acids. Fruit-chloroplast galactolipids of the cucurbits had a greater abundance of 18:2, and hence a higher 18:2/18:3 ratio, than found in the corresponding leaf lipids. Among the phosphoglycerides, the unusual fatty acid 3-trans-hexadecenoate (trans-16:1) constituted from 15 to 24% of the acylated fatty acids in phosphatidyl glycerol (PG) from leaf chloroplasts (all species). In sharp contrast, trans-16:1 was virtually absent in PG from fruit chloroplasts of both Solanaceous and cucurbit species, and was replaced by a proportionate increase in the content of palmitate (16:0). The observed differences in the polar lipid fatty-acid composition of fruit and leaf chloroplasts are discussed in terms of the relative activity of several intrachloroplastic enzymes involved in lipid synthesis and fatty-acyl desaturation.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyl diglyceride - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号