首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.  相似文献   

2.
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.  相似文献   

3.
A biomarker is defined as "a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or biological responses to a therapeutic intervention". Biomarkers can be utilized to detect disease, evaluate treatment risks, or determine treatment effectiveness. In the case of cancer, anthracyclines such as doxorubicin are front-line therapy to treat a number of different malignancies including breast cancer. However, a significant fraction of patients experience drug-induced cardiotoxicity. This toxicity is dose-limiting and can cause long-term morbidity or mortality. There is an unmet medical need to identify patients who are at risk for doxorubicin-induced cardiotoxicity, to detect cardiac damage early so that patient risk can be minimized, and to monitor the success of cardioprotective strategies. Therefore, doxorubicin treatment of cancer is an excellent example of the need for biomarkers to indicate drug safety in addition to drug efficacy. In this review we will discuss the mechanism of doxorubicinassociated cardiotoxicity, as well as other cancer therapies that induce cardiac toxicity by causing oxidative damage. We will also evaluate established and proposed biomarkers for cardiotoxicity based on our evolving knowledge of oxidative damage and subsequent autophagy. Finally, we will discuss advantages of combining oxidative damage- and autophagy-based protein biomarkers with current biomarkers such as troponins to facilitate early detection and mitigation of cardiotoxicity induced by cancer therapeutic agents.  相似文献   

4.
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients.  相似文献   

5.
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients.  相似文献   

6.
Estrogen plays important roles in hormone receptor-positive breast cancer. Endocrine therapies, such as the antiestrogen tamoxifen, antagonize the binding of estrogen to estrogen receptor (ER), whereas aromatase inhibitors (AIs) directly inhibit the production of estrogen. Understanding the mechanisms of endocrine resistance and the ways in which we may better treat these types of resistance has been aided by the development of cellular models for resistant breast cancers. In this review, we will discuss what is known thus far regarding both de novo and acquired resistance to tamoxifen or AIs. Our laboratory has generated a collection of AI- and tamoxifen-resistant cell lines in order to comprehensively study the individual types of resistance mechanisms. Through the use of microarray analysis, we have determined that our cell lines resistant to a particular AI (anastrozole, letrozole, or exemestane) or tamoxifen are distinct from each other, indicating that these mechanisms can be quite complex. Furthermore, we will describe two novel de novo AI-resistant cell lines that were generated from our laboratory. Initial characterization of these cells reveals that they are distinct from our acquired AI-resistant cell models. In addition, we will review potential therapies which may be useful for overcoming resistant breast cancers through studies using endocrine resistant cell lines. Finally, we will discuss the benefits and shortcomings of cell models. Together, the information presented in this review will provide us a better understanding of acquired and de novo resistance to tamoxifen and AI therapies, the use of appropriate cell models to better study these types of breast cancer, which are valuable for identifying novel treatments and strategies for overcoming both tamoxifen and AI-resistant breast cancers.  相似文献   

7.
In recent years, the combination of cancer immunotherapy with standard therapeutic modality is gaining credibility due to a number of clinical trials demonstrating therapeutic success of such combination therapies. However, the mechanism of this phenomenon is poorly understood. Here, we will discuss recent findings that suggest novel mechanisms of synergistic effect of cancer immunotherapy and chemotherapy.  相似文献   

8.
Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV) pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk) gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.  相似文献   

9.
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. Surgery, chemotherapy, radiotherapy, and radioactive iodine (RAI) therapy are the standard TC treatment modalities. However, recurrence or tumor metastasis remains the main challenge in the management of anaplastic thyroid cancer (ATC) and radioiodine (RAI) radioactive iodine-refractory differentiated thyroid cancer (RR-DTC). Several multi-tyrosine kinase inhibitors (MKIs), or immune checkpoint inhibitors in combination with MKIs, have emerged as novel therapies for controlling the progression of DTC, medullary thyroid cancer (MTC), and ATC. Here, we discuss and summarize the molecular basis of TC, review molecularly targeted therapeutic drugs in clinical research, and explore potentially novel molecular therapeutic targets. We focused on the evaluation of current and recently emerging tyrosine kinase inhibitors approved for systemic therapy for TC, including lenvatinib, sorafenib and cabozantinib in DTC, vandetanib, cabozantinib, and RET-specific inhibitor (selpercatinib and pralsetinib) in MTC, combination dabrafenib with trametinib in ATC. In addition, we also discuss promising treatments that are in clinical trials and may be incorporated into clinical practice in the future, briefly describe the resistance mechanisms of targeted therapies, emphasizing that personalized medicine is critical to the design of second-line therapies.  相似文献   

10.
Apoptosis is a tightly regulated cell suicide program that plays an essential role in the maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Defects in this native defense mechanism promote malignant transformation and frequently confer chemoresistance to transformed cells. Indeed, the evasion of apoptosis has been recognized as a hallmark of cancer. Given that multiple mechanisms function at many levels to orchestrate the regulation of apoptosis, a multitude of opportunities for apoptotic dysregulation are present within the intricate signaling network of cell. Several of the molecular mechanisms by which cancer cells are protected from apoptosis have been elucidated. These advances have facilitated the development of novel apoptosis-inducing agents that have demonstrated single-agent activity against various types of cancers cells and/or sensitized resistant cancer cells to conventional cytotoxic therapies. Herein, we will highlight several of the central modes of apoptotic dysregulation found in cancer. We will also discuss several therapeutic strategies that aim to reestablish the apoptotic response, and thereby eradicate cancer cells, including those that demonstrate resistance to traditional therapies.  相似文献   

11.
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.  相似文献   

12.
AimTo evaluate the radiopotentiation of enzalutamide in human prostate cancer cells.BackgroundWhile radiotherapy is the first line of treatment for prostate cancer, androgen blockade therapies are demonstrating significant survival benefit as monotherapies. As androgen blockade can cause cell death by apoptosis, it is likely that androgen blockade will potentiate the cytotoxic activities of radiotherapy.Materials and methodsHere, we tested the potential synergistic effects of these two treatments over two human metastatic prostate cancer cells by real-time cell analysis (RTCA), androgen-sensitive LNCaP cells (Lymph Node Carcinoma of the Prostate) and androgen-independent PC-3. Both cell lines were highly resistant to high doses of radiotherapy.ResultsA pre-treatment of LNCaP cells with IC50 concentrations of enzalutamide significantly sensitized them to radiotherapy through enhanced apoptosis. In contrast, enzalutamide resistant PC-3 cells were not sensitized to radiotherapy by androgen blockade.ConclusionsThese results provide evidence that the enzalutamide/radiotherapy combination could maximize therapeutic responses in patients with enzalutamide-sensitive prostate cancer.  相似文献   

13.
The aim of palliative chemotherapy is to increase survival whilst maintaining maximum quality of life for the individual concerned. Although we are still continuing to explore the optimum use of traditional chemotherapy agents, the introduction of targeted therapies has significantly broadened the therapeutic options. Interestingly, the results from current trials put the underlying biological concept often into a new, less favorable perspective. Recent data suggested that altered pathways underlie cancer, and not just altered genes. Thus, an effective therapeutic agent will sometimes have to target downstream parts of a signaling pathway or physiological effects rather than individual genes. In addition, over the past few years increasing evidence has suggested that solid tumors represent a very heterogeneous group of cells with different susceptibility to cancer therapy. Thus, since therapeutic concepts and pathophysiological understanding are continuously evolving a combination of current concepts in tumor therapy and tumor biology is needed. This review aims to present current problems of cancer therapy by highlighting exemplary results from recent clinical trials with colorectal and pancreatic cancer patients and to discuss the current understanding of the underlying reasons.  相似文献   

14.
A new era of cancer immunotherapy has brought not only successful cancer vaccines but also immunomodulators, such as those that target checkpoint blockade in order to induce endogenous host immune responses. However, the immune system of cancer patients can be compromised through multiple means, including immune suppression by the tumor and by prior therapies such as chemotherapy and radiation. Therefore, a comprehensive means of assessing patient immunocompetence would seem helpful for determining whether patients are ready to benefit from immunotherapy, and perhaps even which immunotherapy might be most appropriate for them. Unfortunately, there are no standardized tests for immune competence, nor is there agreement on what to measure and what will be predictive of outcome. In this review, we will discuss the technologies and assays that might be most useful for this purpose. We argue for a comprehensive approach that should maximize the chances of developing predictive biomarkers for eventual clinical use.  相似文献   

15.
Lung cancer is the most common and most deadly cancer worldwide. Because of the aggressive and metastatic nature of many forms of the disease, it is frequently diagnosed late and responds poorly to the therapies currently available. Although our understanding of the molecular origins and evolution of lung cancer is still incomplete, recent research has yielded several developments that may offer opportunities for new, targeted and effective therapy. In this review we first discuss the prevalence and origins of lung cancer, with emphasis on non-small-cell lung cancer and adenocarcinoma, together with current treatments and their efficacy. We then look at a selection of recent papers which between them shed new light on possible therapeutic opportunities, including a novel synthetic interaction with the Kras gene and genomic or proteomic profiling studies that may pave the way for personalized treatment for lung cancer based on specific “signatures” of protein and gene expression.Lung cancer remains the foremost cause of cancer deaths worldwide. Despite advances in both detection and treatment, diagnosis is often late and the prognosis for patients poor. Our understanding of the molecular basis and progression of lung cancer remains incomplete, hampering the design and development of more effective diagnostic tools and therapies for this devastating disease. However, the last twelve months have witnessed the publication of several studies that represent significant advances in our knowledge of lung cancer, and may represent important steps on the road to effective new therapies. In this review we aim to summarize these recent developments, and give our perspectives on the therapeutic possibilities they may offer in the future.Key words: lung cancer, adenocarcinoma, egfr, kras, chemotherapy, synthetic lethal, genomic profiling, customized therapy, cancer stem cells, hypoxia-inducible factor  相似文献   

16.
Targeting base excision repair to improve cancer therapies   总被引:2,自引:0,他引:2  
Most commonly used cancer therapies, particularly ionizing radiation and certain classes of cytotoxic chemotherapies, cause cell death by damaging DNA. Base excision repair (BER) is the major system responsible for the removal of corrupt DNA bases and repair of DNA single strand breaks generated spontaneously and induced by exogenous DNA damaging factors such as certain cancer therapies. In this review, the physico-chemical properties of the proteins involved in BER are discussed with particular emphasis on molecular mechanisms coordinating repair processes. The aim of this review is to apply extensive knowledge that currently exists regarding the biochemical mechanisms involved in human BER to the molecular biology of current therapies for cancer. It is anticipated that the application of this knowledge will translate into the development of novel effective therapies for improving existing treatments such as radiation therapy and oxaliplatin chemotherapy.  相似文献   

17.
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.  相似文献   

18.
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.  相似文献   

19.
MET(MNNG HOS transforming gene) is one of the receptor tyrosine kinases whose activities are frequently altered in human cancers, and it is a promising therapeutic target. MET is normally activated by its lone ligand, hepatocyte growth factor(HGF), eliciting its diverse biological activities that are crucial for development and physiology. Alteration of the HGF-MET axis results in inappropriate activation of a cascade of intracellular signaling pathways that contributes to hallmark cancer events including deregulated cell proliferation and survival, angiogenesis, invasion, andmetastasis. Aberrant MET activation results from autocrine or paracrine mechanisms due to overexpression of HGF and/or MET or from a ligand-independent mechanism caused by activating mutations or amplification of MET. The literature provides compelling evidence for the role of MET signaling in cancer development and progression. The finding that cancer cells often use MET activation to escape therapies targeting other pathways strengthens the argument for MET-targeted therapeutics. Diverse strategies have been explored to deactivate MET signaling, and compounds and biologics targeting the MET pathway are in clinical development. Despite promising results from various clinical trials, we are still waiting for true MET-targeted therapeutics in the clinic. This review will explore recent progress and hurdles in the pursuit of METtargeted cancer drugs and discuss the challenges in such development.  相似文献   

20.
Bladder cancer is one of the most prevalent genitourinary cancers responsible for about 150,000 deaths per year worldwide. Currently, several treatments, such as endoscopic and open surgery, appended by local or systemic immunotherapy, chemotherapy, and radiotherapy are used to treat this malignancy. However, the differences in treatment outcome among patients suffering from bladder cancer are considered as one of the important challenges. In recent years, cancer stem cells, representing a population of undifferentiated cells with stem-cell like properties, have been eyed as a major culprit for the high recurrence rate in superficial papillary bladder cancer. Cancer stem cells have been reported to be resistant to conventional treatments, such as chemotherapy, radiation, and immunotherapy, which induce selective pressure on tumoral populations resulting in selection and growth of the resistant cells. Therefore, targeting the therapeutic aspects of cancer stem cells in bladder cancer may be promising. In this study, we briefly discuss the biology of bladder cancer and then address the possible relationship between molecular biology of bladder cancer and cancer stem cells. Subsequently, the mechanisms of resistance applied by cancer stem cells against the conventional therapeutic tools, especially chemotherapy, are discussed. Moreover, by emphasizing the biomarkers described for cancer stem cells in bladder cancer, we have provided, described, and proposed targets on cancer stem cells for therapeutic interventions and, finally, reviewed some immunotargeting strategies against bladder cancer stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号