首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.  相似文献   

2.
The alpha-chain of Fc epsilon RI (Fc epsilon RIalpha) plays a critical role in the binding of IgE to Fc epsilon RI. A fully human antibody interfering with this interaction may be useful for the prevention of IgE-mediated allergic diseases. Here, we describe the successful isolation of a human single-chain Fv antibody specific to human Fc epsilon RIalpha using human antibody phage display libraries. Using the non-immune phage antibody libraries constructed from peripheral blood lymphocyte cDNA from 20 healthy subjects, we isolated three phage clones (designated as FcR epsilon 27, FcR epsilon 51, and FcR epsilon 70) through two rounds of biopanning selection. The purified soluble scFv, FcR epsilon 51, inhibited the binding of IgE to recombinant Fc epsilon RIalpha, although both FcR epsilon 27 and FcR epsilon 70 showed fine binding specificity to Fc epsilon RIalpha. Since FcR epsilon 51 was determined to be a monomer by HPLC, BIAcore analysis was performed. The dissociation constant of FcR epsilon 51 to Fc epsilon RIalpha was estimated to be 20 nM, i.e., fortyfold lower than that of IgE binding to Fc epsilon RIalpha (K(d) = 0.5 nM). With these characteristics, FcR epsilon 51 exhibited inhibitory activity on the release of histamine from passively sensitized human peripheral blood mononuclear cells.  相似文献   

3.
Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.  相似文献   

4.
The phage-displayed combinatorial peptide library is a revolutionary method for discovering epitopes, in particular conformational epitopes. In this study, we characterized a Japanese encephalitis virus (JEV) conformational epitope by biopanning of phage-displayed random peptide libraries with a JEV envelope (E) protein-specific monoclonal antibody (mAb) 2H2. Eleven identified phage clones with high affinity to mAb 2H2 were identified using direct and inhibitory binding ELISA. Sequence alignment, structure modeling and mutational analysis revealed that the identified mimotopes for mAb 2H2 possess a conserved motif X(1)(D/E)(Y/T/S)X(2), fitting into a region at the domain III lateral surface of the E protein. The results of our study could provide useful information on the development of effective mimotope-based vaccines and diagnostic kits for the JEV infection.  相似文献   

5.
Pavoni E  Monteriù G  Cianfriglia M  Minenkova O 《Gene》2007,391(1-2):120-129
We report the development of a novel phagemid vector, pKM19, for display of recombinant antibodies in single-chain format (scFv) on the surface of filamentous phage. This new vector improves efficacy of selection and reduces the biological bias against antibodies that can be harmful to host bacteria. It is useful for generation of large new antibody libraries, and for the subsequent maturation of antibody fragments. In comparison with commonly used plasmids, this vector is designed to have relatively low expression levels of cloned scFv antibodies due to the amber codon positioned in a sequence encoding for the PhoA leader peptide. Moreover, fusion of antibodies to the carboxy terminal part only of the gene III protein improves display of scFv on bacteriophage surface in this system. Despite the lower antibody expression, the functional test performed with a new scFv library derived from human peripheral blood lymphocytes demonstrates that specific antibodies can be easily isolated from the library, even after the second selection round. The use of the pKM19 vector for maturation of an anti-CEA antibody significantly improves the final results. In our previous work, an analogous selection through the use of a phagemid vector, with antibody expression under the control of a lacP promoter, led to isolation of anti-CEA phage antibodies with improved affinities, which were not producible in soluble form. Probably due to the toxicity for E. coli of that particular anti-CEA antibody, 70% of maturated clones contained suppressed stop codons, acquired during various selection/amplification rounds. The pKM19 plasmid facilitates an efficient maturation process, resulting in selection of antibodies with improved affinity without any stop codons.  相似文献   

6.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

7.
Polyclonal antibodies, as well as monoclonal antibodies are efficacious in providing protective immunity against Francisella tularensis. This study demonstrates the application of phage display libraries for the construction of monoclonal antibodies against F. tularensis. Novel single-chain fragment variable (scFv) antibodies were generated against a whole bacterial lysate of F. tularensis live vaccine strain using the human single fold scFv libraries I (Tomlinson I + J). A total of 20 clones reacted with the bacterial cell lysate. Further, the library contains two clones responsive to recombinant lipoprotein FTT1103Δsignal (F. tularensis subsp. tularensis Schu S4), which was constructed without a signal sequence. These positively-binding scFvs were evaluated by scFv-phage enzyme-linked immunosorbent assay (ELISA). Then, positive scFvs were expressed in a soluble form in Escherichia coli HB2151 and tested for positive scFvs by using scFv-ELISA.  相似文献   

8.
Staphylococcal food poisoning (SFP) is one of the most prevalent causes of food-borne illness throughout the world. SFP is caused by 21 different types of staphylococcal enterotoxins produced by Staphylococcus aureus. Among these, staphylococcal enterotoxin B (SEB) is the most potent toxin and is a listed biological warfare (BW) agent. Therefore, development of immunological reagents for detection of SEB is of the utmost importance. High-affinity and specific monoclonal antibodies are being used for detection of SEB, but hybridoma clones tend to lose their antibody-secreting ability over time. This problem can be overcome by the use of recombinant antibodies produced in a bacterial system. In the present investigation, genes from a hybridoma clone encoding monoclonal antibody against SEB were immortalized using antibody phage display technology. A murine phage display library containing single-chain variable-fragment (ScFv) antibody genes was constructed in a pCANTAB 5E phagemid vector. Phage particles displaying ScFv were rescued by reinfection of helper phage followed by four rounds of biopanning for selection of SEB binding ScFv antibody fragments by using phage enzyme-linked immunosorbent assay (ELISA). Soluble SEB-ScFv antibodies were characterized from one of the clones showing high affinity for SEB. The anti-SEB ScFv antibody was highly specific, and its affinity constant was 3.16 nM as determined by surface plasmon resonance (SPR). These results demonstrate that the recombinant antibody constructed by immortalizing the antibody genes from a hybridoma clone is useful for immunodetection of SEB.  相似文献   

9.
Antibodies with enzymatic activity were named abzymes or catalytic antibodies. In the present study, the lipolytic abzymes were selected from the phage displayed antibody libraries against a transition state analog (TSA) of lipases/esterases. After three rounds of selection, four monoclonal phage particles capable of binding significantly with the TSA were obtained. The soluble scFv antibody fragments were further expressed and obtained using Escherichia coli strain HB2151. The binding capabilities and the apparent enzymatic activities of the purified antibody proteins were measured. The 3D structures of the expressed antibodies were also predicted through homology modeling and binding-site prediction algorithm. The present method demonstrates that selection from phage displayed antibody libraries is an efficient and convenient means to find new abzymes.  相似文献   

10.
The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 × 107 combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 × 109 combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 × 107 heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule  相似文献   

11.
Currently only a limited number of tumor markers for non-small cell lung cancer (NSCLC) are available. Antibodies to tumor-associated proteins may expand the number of available tumor markers for lung cancer and be used together in a serum profile to enhance sensitivity and specificity. In this study, we isolated 57 tumor-associated proteins from two NSCLC cDNA T7 phage libraries using biopan enrichment techniques with NSCLC patient and normal sera. Sequence analysis showed that among the 57 phage-displayed proteins 45 have sequence identity with known or putative tumor-associated proteins. Immunochemical reactivity of patient sera with phage-expressed proteins showed enrichment on the number of immunogenic phage clones in the biopanning process and also confirmed that antibodies were present in patient sera but not in normal sera. Antibodies to five phage-expressed proteins were measured by enzyme-linked immunosorbent assay (ELISA) to validate the concept that combinations have greater predictive value than any single antibody alone. Logistic regression analysis showed that combined measurements of five antibodies was more predictive of disease than any single antibody alone, underscoring the importance of identifying multiple potential markers. The resulting antibody profiling is a feasible diagnostic strategy for NSCLC. An inventory of corresponding proteins may have significant relevance to tumor biology, novel drug development, and immunotherapies.  相似文献   

12.
The biopanning process is a critical step in phage display for isolating peptides or proteins with specific binding properties. Conventional panning methods are sometimes not so effective and may result in nonspecific or low-yield positive results. In this study, three different strategies including soluble antibody-capturing, pH-stepwise elution, and conventional panning were used for enrichment of specific clones against diphtheria toxoid. The reactivity of the selected clones was evaluated using an indirect enzyme-linked immunosorbent assay. The positive clones were screened using Vero cell viability assay. The neutralizing clones were expressed in HB2151 strain of Escherichia coli and soluble single-chain fragment variable (scFv) fragments were purified by nickel-nitrilotriacetic acid affinity chromatography. Finally, the ability of scFv fragments for neutralizing diphtheria toxin (DT) were evaluated again using Vero cell viability assay. After four rounds of panning, the soluble antibody-capturing method yielded 15 positive phage-scFv clones against diphtheria toxoid. Conventional panning and pH-stepwise elution model resulted from nine and five positive phage-scFv clones, respectively. Among all positive clones, three clones were able to neutralize DT in Vero cell viability assay. Two of these clones belonged to a soluble antibody-capturing method and one of them came from conventional panning. Three neutralizing clones were used for soluble expression and purification of scFvs fragments. It was found that these soluble scFv fragments possessed neutralizing activity ranging from 0.15 to 0.6 µg against two-fold cytotoxic dose 99% of DT. In conclusion, the results of our study indicate that soluble antibody-capturing method is an efficient method for isolation of specific scFv fragments.  相似文献   

13.
Embryogenic and non-embryogenic suspension cultures of orchardgrass (Dactylis glomerata L.) secreted into the culture medium a set of proteins, among which low molecular mass (11/12 kDa) proteins were found. However, only the 11/12 kDa proteins from the embryogenic suspension cultures reacted specifically with an antiserum raised against the carrot EP2 non-specific lipid transfer protein (nsLTP). Two-dimensional (2-D) electrophoretic analysis revealed that the extracellular nsLTP-like proteins from the embryogenic lines were acidic proteins, with pI values ranging between 4.3 and 6.4, and the 11/12 kDa proteins of the non-embryogenic lines were basic ones (pI 8-9.3). This is only the second case to report on the accumulation of extracellular acidic nsLTP-like proteins in the culture medium during somatic embryogenesis. A naive phage display Griffin1. library was used to select single-chain phage antibodies, which specifically bind to acidic nsLTP-like proteins. Nine phage clones were selected after four rounds of biopanning of the target proteins blotted on a nitrocellulose membrane. Three soluble monoclonal single-chain phage antibodies, expressed in the non-suppressor E. coli strain HB2151, were purified by metal affinity chromatography and found to be highly specific for the acidic nsLTP-like proteins from the embryogenic suspension cultures. The application of the selected monoclonal antibodies for localization and elucidation of the role of the acidic nsLTP-like proteins in vivo is discussed.  相似文献   

14.
噬菌体抗体库的构建及抗乳腺癌细胞单链抗体的筛选   总被引:3,自引:0,他引:3  
构建抗人乳腺癌细胞MCF 7的噬菌体单链抗体库 ,从中筛选MCF 7细胞特异性单链抗体。用MCF-7细胞免疫BALB C小鼠 ,取脾脏 ,提取总RNA ,用RT-PCR技术扩增小鼠抗体重链 (VH)和轻链 (VL)可变区基因 ,经重叠PCR(SOE-PCR) ,在体外将VH和VL连接成单链抗体 (scFv)基因 ,并克隆到噬菌粒载体pCANTAB5E中 ,电转化至大肠杆菌TG1,经辅助噬菌体超感染 ,构建噬菌体单链抗体库。从该抗体库中筛选特异性识别MCF-7细胞的噬菌体单链抗体 ,将表面展示单链抗体的单克隆噬菌体转化大肠杆菌TOP10进行可溶性表达。成功地构建了库容为12×106 的抗MCF-7乳腺癌细胞的单链抗体库 ,初步筛选到了与MCF 7细胞特异性结合的scFv,Westernblot检测表明 ,在大肠杆菌TOP10中实现了单链抗体可溶性表达  相似文献   

15.
Phage Peptide Libraries   总被引:1,自引:0,他引:1  
Filamentous phage particles have been central in the construction of libraries displaying vast numbers of random peptides. These random peptides can be antigenically presented as fusions to coat proteins III and VIII of the phage. The isolation of ligate-reactive phage from an immense background of nonspecific phage is achieved by the biopanning process. Enrichment of reactive phage relative to unreactive phage occurs with alternate rounds of affinity selection to the desired molecular target and amplification of the specifically bound phage. This allows the isolation of rare binding species contained in the phage peptide libraries. Each phage particle contains the information in its genome pertaining to the type of random peptide insert displayed. Hence, the identification of binding motifs displayed on ligate-reactive phage is revealed by sequencing the relevant insert site in the phage genome. Phage peptide libraries have been used to isolate ligands to an array of protein ligates. The libraries have proved particularly effective in defining the binding sites of monoclonal antibodies and to some extent polyclonal sera. The analysis of the peptide insert sequences of a number of different clones of antibody binding phage can reveal a great deal about the nature and restriction of the amino acid residues critical for the antibody–antigen interaction.  相似文献   

16.
We have screened a peptide phage display library to examine if monoclonal antibody-binding phages could be isolated from the library and thereby predict the antigenic epitopes of the antibodies from the isolated phages. The library was screened for high-avidity binding to monoclonal antibodies by an affinity purification technique called biopanning. Among the monoclonal antibodies examined, the human hnRNPA1 protein-specific monoclonal antibody 9H10 showed selective binding of phages. After two rounds of the biopanning, twelve clones of high-avidity-binding phages were chosen and their inserts were sequenced. Nucleotide sequence comparison of the 12 clones showed that there were 5 different species, with two species containing four members, implying that they were predominantly selected by the biopanning. The amino acid sequences of the inserts of the 12 clones were compared with that of the human hnRNPA1 protein in order to find the putative epitope of the human hnRNPA1 protein for 9H10. The C-terminal region of the human hnRNPA1 protein shows significant homology with the peptide sequences of the selected phage clones. These results show that this peptide phage display library can be useful in defining the epitope of some monoclonal antibodies.  相似文献   

17.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

18.
A structure-based approach was used to design libraries of synthetic heavy chain complementarity determining regions (CDRs). The CDR libraries were displayed as either monovalent or bivalent single-chain variable fragments (scFvs) with a single heavy chain variable domain scaffold and a fixed light chain variable domain. Using the structure of a parent antibody as a guide, we restricted library diversity to CDR positions with significant exposure to solvent. We introduced diversity with tailored degenerate codons that ideally only encoded for amino acids commonly observed in natural antibody CDRs. With these design principles, we reasoned that we would produce libraries of diverse solvent-exposed surfaces displayed on stable scaffolds with minimal structural perturbations. The libraries were sorted against a panel of proteins and yielded multiple unique binding clones against all six antigens tested. The bivalent library yielded numerous unique sequences, while the monovalent library yielded fewer unique clones. Selected scFvs were converted to the Fab format, and the purified Fab proteins retained high affinity for antigen. The results support the view that synthetic heavy chain diversity alone may be sufficient for the generation of high-affinity antibodies from phage-displayed libraries; thus, it may be possible to dispense with the light chain altogether, as is the case in natural camelid immunoglobulins.  相似文献   

19.
为了实现特异性识别斑马鱼卵黄蛋白原的噬菌体展示单链抗体的可溶性表达,将不能以可溶性蛋白形式表达的、只能以噬菌体展示形式特异性识别斑马鱼卵黄蛋白原的单链抗体F5的基因,克隆到pET 32a载体并转化入大肠杆菌ori DE3中。结果表明,通过诱导表达,可获得可溶性的并且仍特异性识别斑马鱼卵黄蛋白原的单链抗体32a-F5。噬菌体展示单链抗体不能可溶性表达是噬菌体展示技术应用中常见的问题,该方法提供了一种表达可溶性单链抗体的可行性方案。  相似文献   

20.
【目的】获得针对单增李斯特菌的特异性单域重链抗体,并对筛选过程中特异性克隆的富集规律进行分析,为筛选具有种属特异性的噬菌体展示抗体提供参考。【方法】采用固相筛选技术,以热灭活的单增李斯特菌菌体为抗原,通过四轮常规筛选和一轮消减筛选,从驼源天然噬菌体展示文库中筛选针对单增李斯特菌的单域重链抗体。采用Phage-ELISA法,对后四轮筛选洗脱物中随机挑选的噬菌体进行鉴定,阳性克隆进行基因测序及结合特异性分析。通过多序列比对分析将获得的基因序列进行分组和统计。【结果】成功筛选到2株单增李斯特菌特异性的单域重链抗体。【结论】在优化的筛选条件下,基于全细胞的筛选方法能够获得特异性识别单增李斯特菌的单域重链抗体,消减筛选对于去除非特异性克隆是有效的和必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号