首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adiponectin (APN) is an adipocyte-specific secretory protein that is highly and specifically expressed in adipose tissue. Serum APN consists of trimers, hexamers, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be of more bioactive forms. Evidence indicates that APN is produced by salivary gland epithelial cells, might be implicated in the regulation of local immune responses.  相似文献   

2.
Adiponectin is an adipocyte-derived hormone and known to form several species of multimer, however, the precise components of each multimer have not been fully determined. We purified each multimer adiponectin selectively from human plasma and characterized them by affinity columns using anti-adiponectin, gelatin, or anti-albumin antibody and gel filtration. We found that adiponectin exists as four species of multimers in human plasma. According to their migrating mobility and N-terminal amino acid analysis, we defined them as a trimer, albumin-binding trimer, hexamer, and HMW. Low pH shifted HMW to hexamer, raising the possibility that HMW is a 12 mer or larger multimer. We also showed that HMW had the highest binding activity to the membrane fractions of C2C12 myocytes and activated AMPK most potently. Our results indicate that adiponectin forms diverse multimer species and at least some of the functional properties are dependent on a multimer status.  相似文献   

3.
Depth filtration-based harvesting is widely used in mAb manufacturing to remove cell and process-related impurities. However, it has not been studied on control of product-related impurities, which are very critical for product quality. In this article, we studied the interactions of depth filter with high and low molecular weight species (HMWs and LMWs) for their direct removal from cell culture. The process parameters (filter, loading, temperature, and flux) were evaluated for adsorption of HMWs and LMWs by depth filters. The adsorption is significantly dependent on filter media and loading capacity and is mainly on the basis of hydrophobic interaction during harvesting. The HMW and LMW species were characterized as HMW1, HMW2, LMW1, and LMW2. The increasing binding from LMW2 to LMW1, HMW1, and HMW2 is correlated with their increasing hydrophobicity score. Adsorption using enriched HMW sample demonstrated similar total protein binding capacity (36–40 g/m2) between depth filters D0HC and X0HC. However, X0HC has stronger HMW binding than D0HC (71% vs 43% of bound protein), indicating more hydrophobic interaction in X0HC. HMW2 DBC on X0HC reached 12 g/m2, similar to protein binding on hydrophobic interaction membrane adsorbers. Further study showed LMW can induce HMW formation. This study provides a critical understanding of HMW and LMW interaction with depth filters. The strategy of HMW and LMW control by depth filtration-based harvesting was implemented successfully in mAb manufacturing.  相似文献   

4.
Surface proteins Shr, Shp, and the ATP-binding cassette (ABC) transporter HtsABC are believed to make up the machinery for heme uptake in Streptococcus pyogenes. Shp transfers its heme to HtsA, the lipoprotein component of HtsABC, providing the only experimentally demonstrated example of direct heme transfer from a surface protein to an ABC transporter in Gram-positive bacteria. To understand the structural basis of heme transfer in this system, the heme-binding domain of Shp (Shp180) was crystallized, and its structure determined to a resolution of 2.1 Å. Shp180 exhibits an immunoglobulin-like β-sandwich fold that has been recently found in other pathogenic bacterial cell surface heme-binding proteins, suggesting that the mechanisms of heme acquisition are conserved. Shp shows minimal amino acid sequence identity to these heme-binding proteins and the structure of Shp180 reveals a unique heme-iron coordination with the axial ligands being two methionine residues from the same Shp molecule. A negative electrostatic surface of protein structure surrounding the heme pocket may serve as a docking interface for heme transfer from the more basic outer cell wall heme receptor protein Shr. The crystal structure of Shp180 reveals two exogenous, weakly bound hemins, which form a large interface between the two Shp180 molecules in the asymmetric unit. These “extra” hemins form a stacked pair with a structure similar to that observed previously for free hemin dimers in aqueous solution. The propionates of the protein-bound heme coordinate to the iron atoms of the exogenous hemin dimer, contributing to the stability of the protein interface. Gel filtration and analytical ultracentrifugation studies indicate that both full-length Shp and Shp180 are monomeric in dilute aqueous solution.  相似文献   

5.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

6.
Jang HH  Kim SY  Park SK  Jeon HS  Lee YM  Jung JH  Lee SY  Chae HB  Jung YJ  Lee KO  Lim CO  Chung WS  Bahk JD  Yun DJ  Cho MJ  Lee SY 《FEBS letters》2006,580(1):351-355
The H2O2-catabolizing peroxidase activity of human peroxiredoxin I (hPrxI) was previously shown to be regulated by phosphorylation of Thr90. Here, we show that hPrxI forms multiple oligomers with distinct secondary structures. HPrxI is a dual function protein, since it can behave either as a peroxidase or as a molecular chaperone. The effects of phosphorylation of hPrxI on its protein structure and dual functions were determined using site-directed mutagenesis, in which the phosphorylation site was substituted with aspartate to mimic the phosphorylated status of the protein (T90D-hPrxI). Phosphorylation of the protein induces significant changes in its protein structure from low molecular weight (MW) protein species to high MW protein complexes as well as its dual functions. In contrast to the wild type (WT)- and T90A-hPrxI, the T90D-hPrxI exhibited a markedly reduced peroxidase activity, but showed about sixfold higher chaperone activity than WT-hPrxI.  相似文献   

7.
Protein-protein associations, i.e. formation of permanent or transient protein complexes, are essential for protein functionality and regulation within the cellular context. Peroxiredoxins (Prx) undergo major redox-dependent conformational changes and the dynamics are linked to functional switches. While a large number of investigations have addressed the principles and functions of Prx oligomerization, understanding of the diverse in vivo roles of this conserved redox-dependent feature of Prx is slowly emerging. The review summarizes studies on Prx oligomerization, its tight connection to the redox state, and the knowledge and hypotheses on its physiological function in the cell as peroxidase, chaperone, binding partner, enzyme activator and/or redox sensor.  相似文献   

8.
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzcca of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzcca phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzcca, and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzcca.  相似文献   

9.
Softness, strength and self-repair in intermediate filament networks   总被引:2,自引:0,他引:2  
One cellular function of intermediate filaments is to provide cells with compliance to small deformations while strengthening them when large stresses are applied. How IFs accomplish this mechanical role is revealed by recent studies of the elastic properties of single IF protein polymers and by viscoelastic characterization of the networks they form. IFs are unique among cytoskeletal filaments in withstanding large deformations. Single filaments can stretch to more than 3 times their initial length before breaking, and gels of IF withstand strains greater than 100% without damage. Even after mechanical disruption of gels formed by crossbridged neurofilaments, the elastic modulus of these gels rapidly recovers under conditions where gels formed by actin filaments are irreversibly ruptured. The polyelectrolyte properties of IFs may enable crossbridging by multivalent counterions, but identifying the mechanisms by which IFs link into bundles and networks in vivo remains a challenge.  相似文献   

10.

Background

The twin phenomena of aggregation and degradation are classically associated with protein storage. However, although aggregation has been thought to be a possible consequence of protein degradation, it has never before been proposed to be a cause of degradation.

Methods

Proteins stored under physiological conditions and electrophoresed on SDS-PAGE were examined zymographically for the presence of detergent-resistant high molecular weight (HMW) forms, and association of such HMW forms with time-correlated, seeding-dependent gelatinolytic activity, under various conditions.

Results

Eight different proteins aggregate naturally during storage at near-neutral pH, with concomitant development of ‘gelatinolytic’ activity diminished greatly by storage at low temperatures, extremes of pH, arginine, imidazole, BSA, azide, EDTA, DTT, PMSF (but not AEBSF), and diisopropyl fluorophosphate (DFP), suggesting involvement of surface serine residues in a novel aggregate-borne proteolytic activity.

Conclusions

Naturally-formed aggregates of proteins appear to use surface serines to perform peptide bond hydrolysis, explaining degradation of proteins during storage, and indicating why aggregates are cytotoxic.

General significance

The study suggests that a bi-directional cause–effect relationship operates between protein aggregation, and protein degradation, providing clues to the design of better conditions for long-term protein storage.  相似文献   

11.
12.
Reddy RR  Srinivasan K 《Steroids》2011,76(5):455-463
Formation of cholesterol gallstones in gallbladder is controlled by procrystallising and anticrystallising factors present in bile. Dietary fenugreek seed has been recently observed to possess anti-lithogenic potential in experimental mice. In the current animal study, we evaluated the effect of dietary fenugreek on the compositional changes in the bile, particularly its effect on glycoproteins, low-molecular-weight (LMW) and high-molecular-weight (HMW) proteins, cholesterol nucleation time and cholesterol crystal growth. Groups of Wistar rats were fed for 10 weeks with diets: (1) basal control (C), (2) C + fenugreek (12%), (3) high cholesterol diet (HCD) and (4) HCD + fenugreek (12%). Feeding of HCD containing 0.5% cholesterol for 10 weeks rendered the bile lithogenic. Incorporation of fenugreek into HCD decreased the cholesterol content (70.5%), total protein (58.3%), glycoprotein (27.5%), lipid peroxides (13.6%) and cholesterol saturation index (from 1.98 to 0.75) in bile, increased the bile flow rate (19.5%), prolonged the cholesterol nucleation time and reduced the vesicular form of cholesterol (65%), which was accompanied with an increase in smaller vesicular form (94%). There was an increase in biliary phospholipid (33%) and total bile acid (49%) contents in the HCD + fenugreek group as compared with the HCD group. Electrophoretic separation of biliary LMW proteins showed the presence of a high concentration of 28-kDa protein, which might be responsible for the prolongation of cholesterol nucleation time in the fenugreek-fed groups. These findings indicate that the beneficial anti-lithogenic effect of dietary fenugreek, which primarily is due to reduction in the cholesterol content in bile, was additionally affected through a modulation of the nucleating and anti-nucleating proteins, which, in turn, affect cholesterol crystallisation.  相似文献   

13.
鸢尾属分子系统发育学研究进展   总被引:1,自引:0,他引:1  
鸢尾属植物具有重要的观赏价值和经济价值,研究该属属内系统演化关系对该属种质保存、利用和遗传育种具有重要意义.目前,有关鸢尾属各分类单元的系统学关系长期处于争议状态.因此,该文以经典分类系统主要观点为基础,从不同分类单元的系统关系总结了鸢尾属分子系统发育学研究进展.结果表明:现有分子系统发育学研究结果大多支持鸢尾属为并系...  相似文献   

14.
粘细菌的多细胞形态发生及其分子调控   总被引:13,自引:0,他引:13  
粘细菌的多细胞形态发生是粘细菌细胞社会性行为的主要表现.包括细胞有序聚集、细胞自溶、子实体发育和粘孢子的分化形成等.粘细菌的形态发生过程涉及复杂的信号系统和调控,与真核生物具有较大的相似性.是研究原核生物细胞分化发育以及生物进化的重要模式材料.  相似文献   

15.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. Hydrolyzates prepared with endoprotease were more stimulatory to acid production rates than were those prepared with exo/endo protease. The effect of hydrolyzate average molecular weight on acid production is presented. Results show that the hydrolyzate having an average molecular weight of 700 is the most stimulatory to acid production rates.  相似文献   

16.
安琪  冯源恒  杨章旗  胡拉 《广西植物》2022,42(8):1374-1382
香合欢是我国南方特有的珍贵用材树种。为了对其种质资源开展群体遗传学研究,该研究根据香合欢转录组测序结果设计开发EST-SSR引物,并在黄豆树、南洋楹、黑木相思、格木等近缘树种中进行通用性分析。结果表明:(1)所开发的243对引物有171对能够成功扩增出目的条带,在香合欢、黄豆树、南洋楹、黑木相思、格木中的有效扩增率分别为63.79%、33.75%、45.68%、41.56%、14.81%;多态性比率分别为23.87%、12.20%、9.01%、3.96%、2.78%;5个物种间均通用的引物有18对。(2)通过验证共获得香合欢SSR多态性标记37个,黄豆树和南洋楹多态性标记均为10个,黑木相思多态性标记4个,格木多态性标记1个。(3)所开发的香合欢EST-SSR标记,可以满足开展香合欢群体遗传学相关研究的需要,并在黄豆树、南洋楹等近缘树种中具有较好的通用性和研究实用性。综上认为,EST-SSR标记可在香合欢、黄豆树、南洋楹、黑木相思、格木等树种的种质资源遗传多样性评价、育种材料指纹图谱构建、群体交配系统分析等方面提供可靠的研究工具,对香合欢种质资源的保护和利用具有重要意义。  相似文献   

17.
18.
果蝇学习记忆行为的分子机制   总被引:3,自引:0,他引:3  
分子遗传学技术的应用一方面发展了新的神经组织学方法,使果蝇脑中的细微结构得以展示;另一方面,对记忆从形成到提取过程中信息处理的研究,表明蘑菇体可能在形成长时程记忆方面起重要作用,而一对背内侧核团(dorsal paired medial cells)与蘑菇体之间的信息传递对于记忆的“提取(retrieval)”是至关重要的.行为功能检测为视觉信号整和的研究提供了新的实验依据,从而使果蝇蘑菇体的高级脑中枢功能逐渐被揭示出来.  相似文献   

19.
The low molecular weight carbohydrate compositions of the seeds of 29 species ofVicia, namelyV. amoena, V. amurensis, V. bifolia, V. dumetorum, V. fauriei, V. japonica, V. nipponica, V. pisiformis, V. pseudo-orobus, V. sylvatica, V. unijuga, V. venosa, V. cassubica, V. orobus, V. cracca agg.,V. hirsuta, V. villosa agg.,V. tetrasperma,V. oroboides, V. sepium, V. cuspidata, V. grandiflora, V. lathyloides, V. sativa agg.,V. bithynica, V. faba, V. narbonensis, V. hybrida andV. lutea were determined by gas liquid chromatography. The carbohydrate compositions were found to be species-specific. Principal component analysis of the carbohydrate composition data showed that these species can be divided into three groups. Although, as far as the examined species were concerned, these groups were not correlated with the known subgenera, significant correlation between the groups and the known sections was detected in the subgenusVicia. The carbohydrate composition character would be important to clarify the relationships among closely related taxa of the genusVicia.  相似文献   

20.
Summary The batch fermentation of whey permeate to lactic acid was improved markedly by the addition of enzymehydrolyzed whey protein. Acid concentrations greater than 90 g/l were achieved at a productivity of 4.3 g/l per h and a 98% substrate use. Cell mass concentration reached 6 g/l. The acid productivity achieved is somewhat higher than that typical for fermentation of whole whey. The process economics, based on in-house hydrolyzate preparation, look promising. Presented in this paper are the experimental results showing the effects of hydrolyzate concentration on acid and cell mass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号