首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goal, Scope and Background The mere existence of life cycle assessment (LCA) methodology and general acceptance of the life cycle philosophy is not enough to make their use widespread in industry. To gain a better understanding of factors shaping LCA studies and life cycle related practice, field studies of the development of LCA practice in two companies were carried out. Methods In order to obtain a deeper understanding of LCA practice, the number of ‘variables’ was minimized and two similar companies were chosen for study: Stora Enso and SCA. Both companies are part of the Swedish forest products industry, are large multinational enterprises and have been working with LCA since the early 1990s. Both interviews and document studies were used to collect data regarding LCA work from its introduction until 2003. Results and Discussion We found fundamental differences in LCA practice between two similar companies in regard to LCA studies per se (the number of studies undertaken and methodological preferences) and also in regard to the organisation of and approach to LCA work. By testing various theoretical explanations of these divergent LCA practices, we identified the actions of individuals and their understanding of the situation as important factors shaping LCA practice. Conclusions Although sector-wide recommendations on LCA practice are common in the LCA community, this study indicates that companies use LCA differently despite similar structural conditions such as company size or sector affiliation. Recommendations and Perspectives Since the understanding and actions of individuals are important in shaping LCA practice, people working with LCA in industry probably have greater scope for action than they recognise and than sector recommendations may imply when it comes to organising and carrying out their work. Thus, those working with life cycle issues, even in different sectors, can learn much from each other about ways of organising and benefiting from LCA work.  相似文献   

2.
Eco-efficiency     
Goal, Scope and Background The eco-efficiency analysis and portfolio is a powerful decision support tool for various strategic and marketing issues. Since its original academic development, the approach has been refined during the last decade and applied to a multitude of projects. BASF, as possibly the most prominent company using and developing this tool, has applied the eco-efficiency approach to more than 300 projects in the last 7 years. One of the greatest difficulties is to cover both dimensions of eco-efficiency (costs or value added and environmental impact) in a comparable manner. This is particularly a challenge for the eco-efficiency analyses of products. Methods In this publication, an important approach and field of application dealing with product decisions based on the combination of Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) is described in detail. Special emphasis is put on the quantitative assessment of the relation of costs and environmental impacts. In conventional LCA an assessment of environmental impact categories is often made by normalization with inhabitant equivalents. This is necessary to be able to compare the different environmental impact categories, because of each different unit. For the proposed eco-efficiency analysis, the costs of products or processes are also normalized with adapted gross domestic product figures. Results and Discussion The ratio between normalized environmental impact categories and normalized costs (RE,C) is used for the graphical presentation of the results in an eco-efficiency portfolio. For the interpretation of the results of an eco-efficiency analysis, it is important to distinguish ratios RE,C which are higher than one from ratios lower than one. In the first case, the environmental impact is higher than the cost impact, while the inverse is true in the second case. This is very important for defining which kind of improvement is needed and defining strategic management decisions. The paper shows a statistical evaluation of the RE,C factor based on the results of different eco-efficiency analyses made by BASF. For industries based on large material flows (e.g. chemicals, steel, metals, agriculture), the RE,C factor is typically higher than one. Conclusions and Recommendations This contribution shows that LCC and LCA may be combined in a way that they mirror the concept of eco-efficiency. LCAs that do not consider LCC may be of very limited use for company management. For that very reason, corporations should install a data management system that ensures equal information on both sides of the eco-efficiency coin.  相似文献   

3.
The cradle‐to‐cradle (C2C) concept has emerged as an alternative to the more established eco‐efficiency concept based on life cycle assessment (LCA). The two concepts differ fundamentally in that eco‐efficiency aims to reduce the negative environmental footprint of human activities while C2C attempts to increase the positive footprint. This article discusses the strengths and weaknesses of each concept and suggests how they may learn from each other. The eco‐efficiency concept involves no long‐term vision or strategy, the links between resource consumption and waste emissions are not well related to the sustainability state, and increases in eco‐efficiency may lead to increases in consumption levels and hence overall impact. The C2C concept's disregard for energy efficiency means that many current C2C products will likely not perform well in an LCA. Inherent drawbacks are restrictions on the development of new materials posed by the ambition of continuous loop recycling, the perception that human interactions with nature can benefit all parts of all ecosystems, and the hinted compatibility with continued economic growth. Practitioners of eco‐efficiency can benefit from the visions of C2C to avoid a narrow‐minded focus on the eco‐efficiency of products that are inherently unsustainable. Moreover, resource efficiency and positive environmental effects could be included more strongly in LCA. Practitioners of C2C on the other hand should recognize the value of LCA in addressing trade‐offs between resource conservation and energy use. Also, when designing a “healthy emission” it should be recognized that it will often have an adverse effect on parts of the exposed ecosystem.  相似文献   

4.
Purpose

This paper presents the implementation of O-LCA by a Brazilian cosmetics manufacturer. The case study was developed within the framework of the road testing of the “Guidance on organizational LCA” of the UNEP/SETAC Life Cycle Initiative. The aim is to illustrate methodological choices and implementation challenges encountered by the company, i.e., related to the broad product portfolio. The study demonstrates that O-LCA allows quantifying and managing environmental impacts throughout global supply chains and for every individual product.

Methods

O-LCA provides the methodological framework for applying LCA to organizations, and a set of application options based on the structure and experience of organizations. The reporting organization is NATURA Brazil in 2013. The 2600 products in the portfolio are modeled in this first exercise of the company through the bestsellers at each of its ten product category groups. A hybrid approach is considered for data collection: top-down approach for modeling corporate activities and bottom-up approach for upstream and downstream life cycle phases. The data sources are NATURA’s recordings, data gathered from suppliers, estimates from mass and energy balances, and life cycle inventory databases. The approach to acquire direct data or use life cycle databases depends on the representativeness of each raw material or packaging.

Results and discussion

The results show that major impacts could be detected during use phase that demands water and energy to use rinse-off products (the use phase of NATURA’s products contributed over 41% to most impact categories), and in the supply chain, and generated during the obtaining of plant origin ingredients and materials for packaging. Overall, the whole NATURA had in 2013 a potential impact on climate change of 1.4 million tonnes of CO2 eq, a natural land transformation of 1.3 million m2, and a fossil depletion of 0.23 million tonnes of oil eq, among other impacts. Apart from the results at the organizational level, individual results for product bestsellers were calculated and are presented here.

Conclusions

The study confirmed the applicability of the O-LCA model at NATURA, addressed operational issues related to broad product portfolios, considering several dimensions such as data quality and availability, LCA software, and data management. Despite NATURA’s existing practices and previous knowledge in modeling environmental impacts of products and corporate activities, managing the large amount of data involved prove being a complex task. The company identified gaps and opportunities able to guide future method implementation and LCA-based management.

  相似文献   

5.
The widespread popularity of life-cycle assessment (LCA) is difficult to understand from the point of view of instrumental decision making by economic agents. Ehrenfeld has argued, in a 1997 issue of this journal, that it is the world-shaping potential of LCA that is more important than its use as a decision-making tool. The present study attempts to explore the institutionalization of this "LCA world view" among ordinary market actors. This is important because environmental policy relies increasingly on market-based initiatives. Cognitive and normative assumptions in authoritative LCA documents are examined as empirical data and compared with data from focus group interviews concerning products and the environment with "ordinary" manufacturers, retailers, and consumers in Finland. These assumptions are (1) the "cradle-to-grave" approach, (2) the view that all products have an environmental impact and can be improved, (3) the relativity of environmental merit, and (4) the way responsibility for environmental burdens is attributed. Relevant affinities, but also differences, are identified. It is argued that life-cycle thinking is not primarily instrumental, but rather is gaining a degree of intrinsic value. The study attempts to establish a broader institutional context in which the popularity of LCA can be understood. From the point of view of this broader context, some future challenges for the development of LCA and life-cycle thinking are suggested.  相似文献   

6.
Goal, Scope and Background  Performing a life cycle assessment (LCA) has been a rather resource and time-consuming business. The method of data collection may be problematic, and the quality of the final results can be influenced by the reliability of the data. Therefore, it is helpful to utilize an on-line data gathering system to save time and to improve the reliability of the collected raw data. Main Features  We have developed an LCA software package for a steel company. The software consists of two major parts: an LCA tool kit and an interface program. The LCA tool kit is a user interface for handling an LCA database server. It has powerful functions to execute systematic analysis, not only for the amount of energy and raw materials, but also for the volume of pollutants generated by each component. The latter is an interface program between a data handling system and an on-line data gathering system. This interface program is linked with three enterprise database systems, such as enterprise resource planning (ERP), an environmental management system (EMS) and an energy server system (ESS). In this study, we compared three different ways of performing LCA. Two of them are on-line methods, and another is manual. Results and Discussion  Among the three methods, the best method was on-line LCA linked with ERP, EMS and ESS. Case studies in steel works have shown that the current method is superior to manual data gathering in terms of time and cost (man-month) savings, data reliability and other applications. Results of life cycle inventory and life cycle impact assessment for steel products have shown monthly fluctuations due to fuel usage ratio, which have not been detected before using manual data gathering. Conclusions  An LCA can be performed quickly, if one is to employ the on-line data gathering system we have developed. The system consists of an LCA software package including the interface program and LCA tool kit, and the enterprise database systems. Case studies for LCA with the on-line system have shown superior performance to that carried out using the manual data entry method. Recommendations and Perspective  This system enables an enterprise to take Type III and conduct benchmarking to other companies or societies within a short time. Also, combining this tool with an environmental performance evaluation or accounting system can allow one to achieve a more progressive environmental management.  相似文献   

7.

Purpose

This paper introduces the results of an Italian survey on the implementation of life cycle assessment (LCA). Both LCA adopters and nonadopters were involved, in order to understand the main benefits and barriers to the adoption of LCA and how the experiences of LCA adopters differ from the expectations of nonadopters.

Methods

Approximately 2000 Italian companies were contacted and 122 companies participated in the online survey, which represent the 6.5 % of the statistical population of our study. To define the statistical population, firms that had implemented an LCA or an environmental initiative according to an official international standard were only considered. Statistically significant differences in answers between LCA adopters and nonadopters were tested by performing the Mann–Whitney test.

Results and discussion

Companies recognize that LCA can provide useful information to drive strategic decisions and product design, and it is perceived as an opportunity to improve the current monitoring systems. In addition, companies recognize the potential of LCA in marketing, making the communication of green attributes more substantial and robust. Focusing on the barriers experienced by LCA adopters, data collection can be cited. Communication issues also pose a barrier to the further implementation of LCA. The analysis of the results and the comparison of the results for the two groups of respondents highlight that on average, the difficulties are considered as more important than the benefits and that nonadopters tend to overestimate the difficulties and underestimate the benefits connected to the implementation of LCA.

Conclusions

The findings shed light on LCA-related issues both for companies and public servants. The misconception of LCA by nonadopters suggests that an increased awareness is the key to the success of LCA and to its more widespread adoption by companies. It is essential to create and disseminate know-how and sensitize companies to the real barriers and benefits of adopting an LCA. The awareness of potential LCA adopters can be raised by training and education initiatives, as well as by increased possibilities to experiment with these kinds of tools (public programs for financial support, fiscal incentives). On the other hand, market and communication research would contribute to better understand how the environmental impacts of products can be more effectively communicated to clients and consumers.
  相似文献   

8.
A study of industry’s use of LCA has been performed as a special analysis of the Business Environmental Barometer (B.E.B.). The B.E.B. is an international questionnaire survey on industry’s environmental management practices (LCA included), repeated every two years. The first round in 1993 included the Nordic countries. The 1997 round will include eight European countries. This analysis intends to describe industry’s LCA use as such (e.g. active industrial sectors, applications, changes over time) and differences between companies working with LCA and those not working with LCA. The survey indicates that industry is in the process of internalising LCA knowledge, although most companies are still in the learning phase. LCA companies have more developed environmental management systems than non-LCA companies. A company’s LCA use seems to be a competitor-driven activity, judging from LCA distribution among industrial sectors.  相似文献   

9.

Purpose

This article is the third of a series of articles presenting the results of research on the implementation of life cycle management tools in small- and medium-sized companies in Poland. The purpose of the three-part series of articles is to present the results of research on the implementation of life cycle tools in Polish small and medium enterprises (SMEs). This work is part of a project financed by the Polish Agency for Enterprise Development (PAED) which began in February 2011. It was carried out by the Wielkopolska Quality Institute—a business environment institution associated with the Polish Centre for LCA (PCLCA). The main practical objective of the project was to support SMEs in their business development, e.g. by expanding their horizons beyond the sphere of their operation and identifying new areas for the improvement and promotion of the products and services on offer. The specific objective of the analysis involving the assessment of life-cycle costs of products and services was an attempt to answer the question to determine whether the assessment carried out in accordance with the life-cycle cost (LCC) methodology is a good tool for cost management in this type of business. Part 3 describes the results of studies on the assessment of the implementation of LCC in SMEs conducted in 50 companies involved in the project.

Methods

In order to assess the effectiveness of the project and the effectiveness of the implementation of LCA and LCC, a survey was conducted of small- and medium-sized businesses where the implementation works had been fully completed. In total, 50 organisations agreed to participate in the LCC survey (while 46 in the LCA—part 2 paper), which was 71 % of all the companies where the LCA and LCC studies had been carried out within the project. The survey was conducted using individual in-depth interviews. Questions to the representatives of the companies referred both to aspects of their operating in the market (characteristics of a company, its market share, management systems, environmental policy, suppliers, clients) and the implementation of their environmental service (assessment of its effectiveness, motivation, difficulties in its implementation), as well as opinions on the potential applications of LCA in their current operations.

Results and discussion

The experience and observations of LCC experts resulting from their cooperation with the analysed organisations are largely supported by the results of the survey. The overall impression gained from the project is that the small- and medium-sized enterprises considered have a problem with accepting and understanding the life-cycle perspective, and show limited interest in taking liability for environmental and cost aspects beyond the mandatory legal standards and boundaries of their business operations. Nevertheless, the LCC analyses aroused much bigger interest among the companies than the environmental due to the fact that the cost aspects in companies undergoing normal development are seen as an important source of information about the structure of the costs generated with respect to the products or services provided. It is important to note that a very important factor encouraging businesses to join the studies was the fact that they were cost-free. Moreover, the planned introduction of a new product onto the market was the argument that often influenced the decision to implement the LCC. The survey has shown that companies rarely perform cost analyses including all stages of the life cycle of a product or service. Although the awareness of the importance of conducting economic researches for the entire life cycle of a product or service is great, it turned out to be problematic to unambiguously define the practical use of such an analysis, at least at the present stage of development of the companies surveyed.

Conclusions

The results obtained in the survey indicate that in the case of simple products, with a short life cycle, complex cost analyses may seem less useful. For more complex products or services, with long periods of use, high reliability required, and high operating costs, the analyses presented are useful tools that increase the economic efficiency of the projects implemented. It appears that from the point of view of polish SMEs, the usefulness of an LCA is seen mainly from the angle of opportunities for cost reduction (preferably in business) and increased sales (marketing). A good solution would be to conduct relatively simple, but integrated LCA/LCC analyses in SMEs so that the companies would clearly see the economic effects of the proposed environmental improvements.  相似文献   

10.

Purpose

It has been recognised that life cycle assessment (LCA) has a role in framing problem situations in environmental management. Yet relatively few studies have investigated whether the use of LCA does actually lead to the reconceptualisation of product systems as opposed to answering predefined questions. This paper discusses the experiences of six manufacturing firms that commissioned LCA studies as part of a life cycle management project managed by Landcare Research in New Zealand.

Methods

The initial goal and scope of the study was developed by each company’s representative in a workshop that was organised as part of the LCM project. The scope for three of the studies was subsequently redefined by the LCA specialists at Landcare Research and agreed with senior managers at the company. The LCA specialists undertook the LCA studies and presented the results to the companies.

Results and discussion

A significant reconceptualisation of the product system took place in three of the six LCA studies. This reconceptualisation would not have taken place if the scope of the LCA studies had been restricted to address the questions originally asked by the companies. The three companies showed some resistance to expanding the scope.

Conclusions

Use of LCA can lead to reconceptualisation of product systems by companies and quite different priorities for improvement options. Initial resistance to expanding a study’s scope may be (partially) overcome by data collection activities and informal discussions between the LCA specialist and company staff during the process of undertaking the LCA study.  相似文献   

11.

Purpose

Habitat destruction is today the most severe threat to global biodiversity. Despite decades of efforts, there is still no proper methodology on how to assess all aspects of impacts on biodiversity from land use and land use changes (LULUC) in life cycle analysis (LCA). A majority of LCA studies on land extensive activities still do not include LULUC. In this study, we test different approaches for assessing the impact of land use and land use change related to hydropower for use in LCA and introduce restoration cost as a new approach.

Methods

We assessed four hydropower plant projects in planning phase (two upgrading plants with reservoir and two new run-of-river plants) in Southern Norway with comparable geography, biodiversity, and annual energy production capacity. LULUC was calculated for each habitat type, based on mapping of present and future land use, and was further allocated to energy production for each power plant. Three different approaches to assess land use impact were included: ecosystem scarcity/vulnerability, biogenic greenhouse gas (bGHG) emissions, and the cost of restoring affected habitats. Restoration cost represents a novel approach to LCA for measuring impact of LULUC.

Results and discussion

Overall, the three approaches give similar rankings of impacts: larger impact for small and new power plants and less for larger and expanding existing plants. Reservoirs caused a larger total area affected. Permanent infrastructure has a more similar absolute impact for run-of-river and reservoir-based hydropower, and consequently give relatively larger impact for smaller run-of-river hydropower. All approaches reveal impacts on wetland ecosystems as most important relative to other ecosystems. The methods used for all three approaches would benefit from higher resolution data on land use, habitats, and soil types. Total restoration cost is not accurate, due to uncertainty of offset ratios, but relative restoration costs may still be used to rank restoration alternatives and compare them to the costs of biodiversity offsets.

Conclusions

The different approaches assess different aspects of land use impacts, but they all show large variation of impact between the studied hydropower plants, which shows the importance of including LULUC in LCA for hydropower projects. Improved data of total restoration cost (and cost accounting) are needed to implement this approach in future LCA.
  相似文献   

12.
This article reviews efforts made by the United Nations Environment Programme to assess the progress in life cycle assessment (LCA) implementation worldwide. The effort was approached in two stages. First, research was carried out which included a document search and a survey of LCA practitioners. Secondly, an expert workshop of LCA practitioners was held to review the survey results and to develop recommendations for action. Results highlight that there is significant and growing interest in LCA and that its use is increasing. To foster better LCA adoption, industry, government and other societal groups will have to address barriers due to a lack of: a perceived need for LCA, of expertise or know how, of funding and a lack of data and methodology.  相似文献   

13.
Existing life cycle assessment (LCA) studies for furniture focus on single pieces of furniture and use a bottom‐up approach based on their bill of materials (BOM) to build up the data inventories. This approach does not ensure completeness regarding material and energy fluxes and representativeness regarding the product portfolio. Integrating material and energy fluxes collected at company level into product LCA (top‐down approach) over‐rides this drawback. This article presents a method for systematic LCA of industrially produced furniture that merges the top‐down approach and bottom‐up approach. The developed method assigns data collected at the company level to the different products while, at the same time, considering that wood‐based furniture is a complex product. Hence, several classifications to reduce the complexity to a manageable level have been developed. Simultaneously, a systematic calculation routine was established. The practical implementation of the developed method for systematic LCA is carried out in a case study within the German furniture industry. The system boundary was set in accord with the EN 15804 specification cradle‐to‐gate‐with‐options. The analysis therefore includes the manufacturing phase supplemented by an end‐of‐life scenario. The case study shows that the manufacturing of semifinished products (especially wood‐based panels and metal components) as well as the electric energy demand in furniture manufacturing account for a notable share of the environmental impacts. A sensitivity analysis indicates that up to roughly 10% of the greenhouse gas emissions are not recorded when conducting an LCA based on a BOM instead of applying the developed approach.  相似文献   

14.
Life cycle assessment (LCA) is a methodology for assessing the environmental impacts associated with products throughout their lifecycle. Many impacts are accounted for within the LCA framework, but to date biodiversity impacts have received little attention. There are a number of existing direct and indirect measures of biodiversity within the ecological field, some of which have the potential to be developed into a useable method for LCA. However, our assessment is that considerable development would be required and their implementation for LCA is not likely in the foreseeable future. Here an alternative approach is proposed for rapidly incorporating biodiversity impacts into LCA. The approach relies on expert opinions through a series of questions which aim to encapsulate the main issues relating to biodiversity within a disturbance impact framework. While the technique is in its infancy we outline a foundation for the approach and identify the steps required to develop this method for implementation into LCA.  相似文献   

15.
A study has been performed on Danish industry’s experiences with LCA. Twenty-six enterprises from different sectors conpleted a questionnaire. The enterprises are still in an adoption and learning phase, and experiences with full-blown LCA’s are sparse. Expectations of future market pressure to supply more environmentally friendly products is the most important incentive for the enterprises to engage in LCA activities. This pressure, however, has not yet emerged and the enterprises have not achieved the expected competitive advantages. LCA work has revealed new environmental aspects of the products with subsequent new priorities in the environmental efforts. Only a few enterprises have built up in-house LCA competence, whereas consultants are heavily involved in LCA work. In large enterprises, LCA work is predominantly carried out by environmental staff members, but the product development staff is also involved. The nature of the co-operation and distribution of roles between these two actors is not clear, and should therefore be studied further.  相似文献   

16.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

17.
CIBA’s Textile Dyes and Chemicals divisions use screening LCAs for their 1700 sales products to improve portfolio management and ecological process development. Material flow, energy, and waste data for in-house manufacturing processes are extracted from our company databases into our LCA system ECOSYS. For meaningful comparisons of whole life cycles, we must include LCA estimates for over 4000 raw materials from other suppliers. Even crude estimates are preferable to the frequently practiced omission of unknown process steps since they allow worst-case or sensitivity analyses. Sources for mass flows are (decreasing order of reliability): process literature (SRI-PEP Yearbook, Ullmann, Kirk-Othmer, patents), yields of analogous processes, theoretical stoichiometry. Energy demands come from literature, or from a set of standard operation estimates developed by our process engineers. Wastes/emissions, if not published, are derived from yields and elemental balances, estimated emissions of energy carriers (BUWAL-132), and typical end-of-pipe measures in CIBA. These data sets are kept as “added-burden modules” (ABM) in our system, each with a set of “inherent burdens”, which are transformed to step-specific burden estimates by a “propagation” program, before the overall burdens of the whole process tree are cumulated. This program checks every process for actually measured burdens, before applying the attached ABM estimates to fill the gaps. Centralization of estimates as ABM with inherent burdens facilitates maintenance and adaptation. At present, well over 250 important intermediates were estimated and used in our product trees; many more follow rapidly. This article is an example of how industry is using LCA to address environmental issues.  相似文献   

18.
Publicly Available Specification 2050‐2011 (PAS 2050), the Green House Gas Product Protocol (GHGPP) standard and forthcoming guideline 14067 from the International Organization for Standardization (ISO) have helped to propel carbon footprinting from a subdiscipline of life cycle assessment (LCA) to the mainstream. However, application of carbon footprinting to large portfolios of many distinct products and services is immensely resource intensive. Even if achieved, it often fails to inform company‐wide carbon reduction strategies because footprint data are disjointed or don't cover the whole portfolio. We introduce a novel approach to generate standard‐compliant product carbon footprints (CFs) for companies with large portfolios at a fraction of previously required time and expertise. The approach was developed and validated on an LCA dataset covering 1,137 individual products from a global packaged consumer goods company. Three novel techniques work in concert in a single approach that enables practitioners to calculate thousands of footprints virtually simultaneously: (i) a uniform data structure enables footprinting all products and services by looping the same algorithm; (ii) concurrent uncertainty analysis guides practitioners to gradually improve the accuracy of only those data that materially impact the results; and (iii) a predictive model generates estimated emission factors (EFs) for materials, thereby eliminating the manual mapping of a product or service's inventory to EF databases. These autogenerated EFs enable non‐LCA experts to calculate approximate CFs and alleviate resource constraints for companies embarking on large‐scale product carbon footprinting. We discuss implementation roadmaps for companies, including further road‐testing required to evaluate the effectiveness of the approach for other product portfolios, limitations, and future improvements of the fast footprinting methodology.  相似文献   

19.
Three Strategies to Overcome the Limitations of Life-Cycle Assessment   总被引:2,自引:0,他引:2  
Many research efforts aim at an extension of life‐cycle assessment (LCA) in order to increase its spatial or temporal detail or to enlarge its scope. This is an important contribution to industrial ecology as a scientific discipline, but from the application viewpoint other options are available to obtain more detailed information, or to obtain information over a broader range of impacts in a life‐cycle perspective. This article discusses three different strategies to reach these aims: (1) extension of LCA—one consistent model; (2) use of a toolbox—separate models used in combination; and (3) hybrid analysis—combination of models with data flows between them. Extension of LCA offers the most consistent solution. Developments in LCA are moving toward greater spatial detail and temporal resolution and the inclusion of social issues. Creating a supertool with too many data and resource requirements is, however, a risk. Moreover, a number of social issues are not easily modeled in relation to a functional unit. The development of a toolbox offers the most flexibility regarding spatial and temporal information and regarding the inclusion of other types of impacts. The rigid structure of LCA no longer sets limits; every aspect can be dealt with according to the logic of the relevant tool. The results lack consistency, however, preventing further formal integration. The third strategy, hybrid analysis, takes up an intermediate position between the other two. This strategy is more flexible than extension of LCA and more consistent than a toolbox. Hybrid analysis thus has the potential to combine the strong points of the other two strategies. It offers an interesting path for further discovery, broader than the already well‐known combination of process‐LCA and input‐output‐LCA. We present a number of examples of hybrid analysis to illustrate the potentials of this strategy. Developments in the field of a toolbox or of hybrid analysis may become fully consistent with LCA, and then in fact become part of the first solution, extension of LCA.  相似文献   

20.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号