共查询到20条相似文献,搜索用时 15 毫秒
1.
Venturin M Gervasini C Orzan F Bentivegna A Corrado L Colapietro P Friso A Tenconi R Upadhyaya M Larizza L Riva P 《Human genetics》2004,115(1):69-80
NF1 microdeletion syndrome is caused by haploinsufficiency of the NF1
gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by non-allelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while the remaining deletions show unusual breakpoints. We performed high-resolution FISH analysis of 18 NF1
microdeleted patients with the aims of mapping non-recurrent deletion breakpoints and verifying the presence of additional recombination-prone architectural motifs. This approach allowed us to obtain the sequence of the first junction fragment of an atypical deletion. By conventional FISH, we identified 16 patients with REP-mediated common deletions, and two patients carrying atypical deletions of 1.3 Mb and 3 Mb. Following fibre-FISH, we identified breakpoint regions of 100 kb, which led to the generation of several locus-specific probes restricting the atypical deletion endpoint intervals to a few kilobases. Sequence analysis provided evidence of small blocks of REPs, clustered around the 1.3-Mb deletion breakpoints, probably involved in intrachromatid non-allelic homologous recombination (NAHR), while isolation and sequencing of the 3-Mb deletion junction fragment indicated that a non-homologous end joining (NHEJ) mechanism is implicated.M. Venturin and C. Gervasini contributed equally to the study 相似文献
2.
Chen SY Tsubouchi T Rockmill B Sandler JS Richards DR Vader G Hochwagen A Roeder GS Fung JC 《Developmental cell》2008,15(3):401-415
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere. 相似文献
3.
Dooner HK 《The Plant cell》2002,14(5):1173-1183
Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products. 相似文献
4.
5.
Thomas D. Petes 《Cell》1980,19(3):765-774
6.
Gervasini C Venturin M Orzan F Friso A Clementi M Tenconi R Larizza L Riva P 《Genomics》2005,85(2):273-279
Neurofibromatosis type 1 (NF1) microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by nonallelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while a few uncommon deletions show unusual breakpoints. We characterized an uncommon 1.5-Mb deletion of an NF1 patient displaying a mild phenotype. We applied high-resolution FISH analysis allowing us to obtain the sequence of the first junction fragment of an uncommon deletion showing the telomeric breakpoint inside the IVS23a of the NF1 gene. Sequence analysis of the centromeric and telomeric boundaries revealed that the breakpoints were present in the AluJb and AluSx regions, respectively, showing 85% homology. The centromeric breakpoint is localized inside a chi-like element; a few copies of this sequence are also located very close to both breakpoints. The in silico analysis of the breakpoint intervals, aimed at identifying consensus sequences of several motifs usually involved in deletions and translocations, suggests that Alu sequences, probably associated with the chi-like element, might be the only recombinogenic motif directly mediating this large deletion. 相似文献
7.
J. Kim Holloway Xianfei Sun Rayka Yokoo Anne M. Villeneuve Paula E. Cohen 《The Journal of cell biology》2014,205(5):633-641
Meiotic crossovers (COs) are crucial for ensuring accurate homologous chromosome segregation during meiosis I. Because the double-strand breaks (DSBs) that initiate meiotic recombination greatly outnumber eventual COs, this process requires exquisite regulation to narrow down the pool of DSB intermediates that may form COs. In this paper, we identify a cyclin-related protein, CNTD1, as a critical mediator of this process. Disruption of Cntd1 results in failure to localize CO-specific factors MutLγ and HEI10 at designated CO sites and also leads to prolonged high levels of pre-CO intermediates marked by MutSγ and RNF212. These data show that maturation of COs is intimately coupled to deselection of excess pre-CO sites to yield a limited number of COs and that CNTD1 coordinates these processes by regulating the association between the RING finger proteins HEI10 and RNF212 and components of the CO machinery. 相似文献
8.
Mutations in mitochondrial tRNA genes: a frequent cause of neuromuscular diseases. 总被引:7,自引:1,他引:7
下载免费PDF全文
![点击此处可从《Nucleic acids research》网站下载免费的PDF全文](/ch/ext_images/free.gif)
We have sequenced the tRNA genes of mtDNA from patients with chronic progressive external ophthalmoplegia (CPEO) without detectable mtDNA deletions. Four point mutations were identified, located within highly conserved regions of mitochondrial tRNA genes, namely tRNA(Leu)(UAG), tRNA(Ser)(GCU), tRNA(Gly) and tRNA(Lys). One of these mutations (tRNA(Leu)(UAG)) was found in four patients with different forms of mitochondrial myopathy. An accumulation of three different tRNA point mutations (tRNA(Leu)(UAG)), tRNA(Ser)(GCU) and tRNA(Gly) was observed in a single patient, suggesting that mitochondrial tRNA genes represent hotspots for point mutations causing neuromuscular diseases. 相似文献
9.
10.
High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene 总被引:9,自引:0,他引:9
下载免费PDF全文
![点击此处可从《American journal of human genetics》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Kehrer-Sawatzki H Kluwe L Sandig C Kohn M Wimmer K Krammer U Peyrl A Jenne DE Hansmann I Mautner VF 《American journal of human genetics》2004,75(3):410-423
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms. 相似文献
11.
12.
Karolina Kobus Daniela Hartl Claus Eric Ott Monika Osswald Angela Huebner Maja von der Hagen Denise Emmerich Jirko Kühnisch Hans Morreau Frederik J. Hes Victor F. Mautner Anja Harder Sigrid Tinschert Stefan Mundlos Mateusz Kolanczyk 《PloS one》2015,10(3)
Background
Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5–5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis.Materials and Methods
We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient.Results
In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland.Conclusions
Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans. 相似文献13.
Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of replication protein A
下载免费PDF全文
![点击此处可从《Genetics》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes, essential for DNA replication, repair, and recombination. During mitosis and meiosis in budding yeast, RPA becomes phosphorylated in reactions that require the Mec1 protein kinase, a central checkpoint regulator and homolog of human ATR. Through mass spectrometry and site-directed mutagenesis, we have now identified a single serine residue in the middle subunit of the RPA heterotrimer that is targeted for phosphorylation by Mec1 both in vivo and in vitro. Cells containing a phosphomimetic version of RPA generated by mutation of this serine to aspartate exhibit a significant alteration in the pattern of meiotic crossovers for specific genetic intervals. These results suggest a new function of Mec1 that operates through RPA to locally control reciprocal recombination. 相似文献
14.
As a group, sex chromosome aneuploidies - the 47,XXY, 47,XYY, 47,XXX and 45,X conditions - constitute the most common class of chromosome abnormality in human live-births. Considerable attention has been given to the somatic abnormalities associated with these conditions, but less is known about their meiotic phenotypes; that is, how does sex chromosome imbalance influence the meiotic process. This has become more important with the advent of assisted reproductive technologies, because individuals previously thought to be infertile can now become biological parents. Indeed, there are several recent reports of successful pregnancies involving 47,XXY fathers, and suggestions that cryopreservation of ovarian tissue might impart fertility to at least some Turner syndrome individuals. Thus, the possible consequences of sex chromosome aneuploidy on meiotic chromosome segregation need to be explored. 相似文献
15.
16.
17.
18.
Corral T Jiménez M Hernández-Muñoz I Pérez de Castro I Pellicer A 《Journal of cellular physiology》2003,197(2):214-224
Neurofibromin (NF1) (the product of Nf1 gene) is a large cytosolic protein known as a negative regulator of Ras. A fragment of some 400 residues located at the center of the NF1 GAP-Related Domain (NF1-GRD) has strong identity with other molecules of the GAP family, which comprises, among others, the mammalian proteins NF1 and p120GAP, and the yeast proteins IRA1 and IRA2. GAP family members are known by their ability to promote the GTPase activity of Ras proteins, facilitating the transit of those proteins to their inactive state. Recent findings (Tong et al., 2002, Nat Neurosci 5:95-96) indicate that NF1 may be involved in the regulation of adenyl cyclase activity. Our results show that NF1-GRD cooperates with Ras in the anchorage-independent growth capacity of Ras-expressing fibroblasts, without affecting: (i) their ability to grow in low serum, (ii) their cellular adhesion capability, or (iii) the expression of key proteins involved in cell-cell and cell-matrix interactions. On the other hand, NF1 overexpression induces an increase in the expression levels of the focal adhesion kinase (FAK), and specific changes in the activation status of the mitogen-activated protein kinases (MAPKs). These results suggest the existence of a Ras-independent NF1-dependent pathway able to modify the levels of expression of FAK and the levels of activation of MAPKs. Because FAK and many proteins recently found to bind NF1 have a role in the cytoskeleton, this pathway may involve rearrangement of cytoskeletal components that facilitate anchorage independence. 相似文献
19.
Thomas SL Deadwyler GD Tang J Stubbs EB Muir D Hiatt KK Clapp DW De Vries GH 《Biochemical and biophysical research communications》2006,348(3):971-980
Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells. 相似文献
20.
Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. 总被引:1,自引:0,他引:1
In the yeast Saccharomyces cerevisiae, small chromosomes undergo meiotic reciprocal recombination (crossing over) at rates (centimorgans per kilobases) greater than those of large chromosomes, and recombination rates respond directly to changes in the total size of a chromosomal DNA molecule. This phenomenon, termed chromosome size-dependent control of meiotic reciprocal recombination, has been suggested to be important for ensuring that homologous chromosomes cross over during meiosis. The mechanism of this regulation was investigated by analyzing recombination in identical genetic intervals present on different size chromosomes. The results indicate that chromosome size-dependent control is due to different amounts of crossover interference. Large chromosomes have high levels of interference while small chromosomes have much lower levels of interference. A model for how crossover interference directly responds to chromosome size is presented. In addition, chromosome size-dependent control was shown to lower the frequency of homologous chromosomes that failed to undergo crossovers, suggesting that this control is an integral part of the mechanism for ensuring meiotic crossing over between homologous chromosomes. 相似文献