首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovaries of Mutilla sp., as those of other hymenopterans, consist of meroistic-polytrophic ovarioles. Within each ovariole, a terminal filament, a germarium, and a vitellarium can be distinguished. The germaria contain numerous dividing and/or differentiating groups (clusters) of germ cells. The vitellaria are composed of several, linearly arranged, ovarian follicles; each follicle consists of an oocyte and a group of nurse cells. Distribution of cytoskeletal elements (microfilaments and microtubules) throughout the ovarioles of Mutilla sp. has been studied on whole mount preparations stained with rhodamine-conjugated phalloidin and FITC-labelled anti-tubulin.  相似文献   

2.
Three different ovariole types exist in insects: panoistic, polytrophic- and telotrophic-meroistic. Their ontogenetic development is comparable to all insect orders. Each ovariole is composed of somatic tissues and germ cells.Panoistic ovarioles can be developed: (1) by totally blocking germ cell cluster division (e.g. in “primitive” insect orders; and (2) after germ cell cluster formation by final cleavage of cystocytes, which develop as oocytes (e.g. in stoneflies or thrips).Polytrophic-meroistic ovaries, showing a set of identical characters, are found among hemirnetabolous and holometabolous insects, indicating a “basic type” of common origin. One characteristic feature is the differentiation of only one oocyte, which is derived from one central cell of the cluster, whereas all other siblings are transformed into nurse cells.Telotrophic ovaries differ from polytrophic ovaries by retention of all nurse cells in the anterior trophic chamber. In addition, oocyte-nurse cell determination can be shifted towards more oocytes in a cluster, and clusters or subclusters can fuse by cell membrane reduction among nurse cells. This type of ovary developed independently 3 times from polytrophic ancestors and once in mayflies directly from panoistic ancestors.  相似文献   

3.
Preliminary histological analysis showed that the ovaries in Nannochorista neotropica are composed of numerous ovarioles of panoistic type. In the ovaries of adult females each ovariole consists of a terminal filament, vitellarium and pedicle while a germarium is absent. Morphological observations supported by simple histochemical tests revealed the presence of multiple nucleoli in the oocyte nucleus. The appearance of multiple nucleoli suggests that the extrachromosomal amplification of ribosomal DNA may take place in the oocytes of Nannochorista. The results show that in the structure of the ovariole and the course of oogenesis nannochoristids share noteworthy derived features with boreids, but differ significantly from all other mecopterans. These findings indicate the possible monophyly of an assemblage comprising the Nannomecoptera, Neomecoptera and Siphonaptera.  相似文献   

4.
The ovaries of the snow scorpionfly, Boreus hyemalis (Mecoptera : Boreidae) are panoistic and comprise 7–8 ovarioles. Each ovariole consists of a terminal filament, elongated vitellarium, and ovariole stalk (=pedicel) only ; in adult specimens, functional germaria are absent. Five consecutive stages of oogenesis i.e., early, mid- and late previtellogenesis, vitellogenesis, and choriogenesis have been distinguished in imagines. Oocyte nuclei (=germinal vesicles) of previtellogenic oocytes contain numerous polymorphic multiple nucleoli (or nucleolar masses), endobodies, and chromatin aggregations. Next to the nuclear envelope, large accumulations of nuage material are localized. The ooplasm of late previtellogenic oocytes is differentiated into transparent (perinuclear) and opaque (peripheral) regions. Ultrastructural investigations have revealed that within the latter, abundant ribosomes as well as mitochondria, elements of endoplasmic reticulum, Golgi complexes, annulate lamellae, symbiotic bacteroids, lipid droplets and distinctive accumulations of membrane-free clathrin-like cages are present. Early- and mid previtellogenic oocytes are invested with flat somatic cells that gradually transform into a follicular epithelium. In the vicinity of 3-cell junctions, neighbouring follicular cells are joined by narrow intercellular bridges. During late previtellogenesis, numerous microvilli develop on the oocyte surface. They interdigitate with morphologically similar but less frequent microvilli of the follicular cells. Concurrently, first endocytotic vesicles appear in the cortical ooplasm. In the context of presented results, the phylogenetic relationships between mecopterans (boreids) and fleas are discussed.  相似文献   

5.
The results of histological and EM studies on the ovaries of three representatives of Megaloptera: Chauliodes pectinicornis, Nigronia fasciata (Chauliodidae), and Corydalus peruvianus Corydalidae) are presented. It is shown that the ovaries of all 3 investigated species are panoistic (secondary panoistic, = neopanoistic) and consist of numerous (more than a hundred) ovarioles that are differentiated into 3 well-defined regions: the terminal filament, the germarium, and the vitellarium. The germaria of adult females are apparently non-functional and contain germ and somatic cells in various stages of degeneration. The vitellaria are composed of 12-15 developing ovarian follicles (= oocytes surrounded by follicular cells) in a linear arrangement. In adult females these follicles can be classified into early previtellogenic, late previtellogenic, vitellogenic, and choriogenic. During early previtellogenesis oocyte nuclei (= germinal vesicles) contain single nucleolar masses. Histochemical analyses indicate that within the masses DNA as well as AgNOR proteins are present. During subsequent stages of the previtellogenic growth nucleolar masses gradually break down into smaller aggregations of coarse granular material, i.e. multiple nucleoli. In chauliodids the nucleoli are distributed evenly throughout the nucleoplasm while in the corydalid, C. peruvianus, they form a characteristic ring. The presented results are discussed in a phylogenetic context.  相似文献   

6.
The ovaries of the common wasp, Vespula germanica are polytrophic-meroistic and consist of 2-3 (workers) or 7 (queens) ovarioles. The ovarioles are differentiated into three regions: a terminal filament, a germarium, and a vitellarium. The germaria of both castes consist of two zones: an anterior zone of germ-cell cluster formation and a posterior one of germ-cell cluster differentiation. The vitellaria comprise 4-6 (workers) or 7-10 (queens) ovarian follicles (egg chambers). Each chamber consists of an oocyte and about 60 isodiametric nurse cells (trophocytes). The egg chambers have been arbitrarily classified into four developmental categories: early and late previtellogenic, vitellogenic, and choriogenic. The process of oogenesis in workers proceeds only up to the onset of the late previtellogenesis. Neither vitellogenic nor choriogenic egg chambers were observed in this caste. During early and late previtellogenesis the envelope of the oocyte nucleus proliferates and becomes highly folded. This process leads to the formation of characteristic organelles, termed accessory nuclei (AN). Although AN arise in the oocytes of both queens and workers, their number in the latter caste is always considerably lower. At the onset of the late previtellogenesis AN start to migrate towards the periphery of the oocyte where they reside till the end of oogenesis. The physiological state of the worker ovaries is discussed in the light of the presented results.  相似文献   

7.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

8.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

9.
The structure of aphid ovaries, including ovipare and virginopare morphs of five species, was investigated by light and electron microscopy. Aphids contain telotrophic meroistic ovarioles. The amount and distribution of cytoplasmic components of nurse cells, nutritive cords, and young oocytes are nearly identical to those known from scale insects and heteropterans. Each ovariole has a constant number of nurse cells and oocytes. In ovaries of ovipare morphs, the nurse cell nuclei enlarge by endomitosis (n = 28n?210n), whereas in virginopare morphs the nurse cell nuclei remain small (n = 22n?24n). Furthermore, in virginoparae the previtellogenic growth of oocytes is highly reduced, and vitellogenesis and chorionogenesis are blocked totally. Embryogenesis starts immediately after the shortened previtellogenic growth. In each ovariole, all germ cell descendants belong to one germ cell cluster that follows the 2n rule. The cluster normally contains 25 = (32) cells, but other mostly smaller numbers also occur. In contrast to polytrophic meroistic ovarioles, more than one cell of each cluster will develop into an oocyte. In Drepanosiphum platanoides, 16 (2n?1) nurse cells and 16 (2n?1) oocytes exist in each cluster, whereas, in Metopolophium dirhodum, 8 (2n?2) oocytes and 24 (2n?1 + 2n?2) nurse cells are normally found. In many ovarioles of Macrosiphum rosae, 21 nurse cells nourish 11 oocytes. Models of germ cell cluster formation in aphid ovaries are discussed.  相似文献   

10.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

11.
The female reproductive system of the pig louse, Haematopinus suis (Insecta: Phthiraptera) is composed of paired ovaries, lateral oviducts, and a common oviduct that leads into a vagina. Clusters of mycetocytes (= cells filled with symbiotic organisms) are associated with lateral oviducts. Each ovary is composed of five loosely arranged ovarioles of the polytrophic-meroistic type. An individual ovariole is covered by a basal lamina and is composed of a terminal filament, germarium, and vitellarium. The terminal filament is composed of large, disc-shaped cells that are orientated perpendicularly to the long axis ofthe ovariole. The basal part of the terminal filament is separated from the germarium by a well-developed transverse septum. The germarium is short and filled with clusters of oogonial cells. In each cluster the cells arejoined by intercellular bridges, filled with fusomal material. Within the cluster, only one cell, the future oocyte, enters the prophase of the first meiotic division; the other cells differentiate into nurse cells. The basal part ofthe germarium is filled with the somatic prefollicular cells. The boundary between the germarium and the vitellarium is not distinct. The vitellarium contains linearly arranged ovarian follicles in subsequent stages of oogenesis (previtellogenesis, vitellogenesis and choriogenesis). Each follicle consists of an oocyte and 7 nurse cells and is surrounded by follicular cells. During oogenesis the follicular cells diversify, so that ultimately, five morphologically distinct subpopulations of these cells can be distinguished: (1) cells in contact with the nurse cells, (2) anterior cells, (3) mainbody cells, (4) posterior cells, and (5) interfollicular cells. Interestingly, the follicular cells associated with the anterior part of the oocyte, i.e. located in space at the oocyte/nurse cell border (fold cells) are mitotically active throughout previtellogenesis. It might be suggested, in this context, that the separation of the oocyte from the nurse cell compartment is brought about by mitotic divisions, consequent multiplication and centripetal migration of these cells.  相似文献   

12.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Summary Each of the two ovaries ofCatajapyx aquilonaris is composed of seven segmentally (metamerically) arranged ovarioles. The two lateral oviducts that join and bear ovarioles extend throughout the abdomen. In the ovariole three regions can be recognized: the terminal filament, the germarium and the vitellarium. The terminal filaments do not fuse with each other but attach separately (by means of muscle fibres) to the closest lobes of the fat body. Germ cells in the germarium are not joined by intercellular bridges and do not form clusters. Thus the ovarioles ofC. aquilonaris are interpreted as being primarily panoistic. The results obtained support the hypothesis that both dipluran subgroups (Campodeina and Japygina) do not form a monophyletic unit.  相似文献   

14.
The ovaries of Euborellia fulviceps are composed of five elongated ovarioles of meroistic-polytrophic type. The individual ovariole has three discernible regions: the terminal filament, germarium, and vitellarium. The terminal filament is a stalk of flattened, disc-shaped somatic cells. In the germarium, germline cells in subsequent stages of differentiation are located, and the vitellarium comprises numerous ovarian follicles arranged linearly. The individual ovarian follicles within the vitellarium are separated by prominent interfollicular stalks. The follicles are composed by two germline cells only: an oocyte and a single, polyploid nurse cell, which are surrounded by a monolayer of somatic follicular cells (FCs). During subsequent stages of oogenesis, initially uniform follicular epithelium begins to diversify into morphologically and physiologically distinct subpopulations. In E. fulviceps, the FC diversification mode is rather simple and leads to the formation of only three different FC subpopulations: (1) cuboidal FCs covering the oocyte, (2) stretched FCs surrounding the nurse cell and (3) FCs actively migrating between oocyte and a nurse cell. We found that FCs from the latter subpopulation send long and thin filopodium-like and microtubule-rich processes penetrating between the oocyte and nurse cell membranes. This suggests that, in E. fulviceps, cells from at least one FCs subpopulation show the ability to change position within an ovarian follicle by means of active migration.  相似文献   

15.
16.
The morphology of ovaries, oviducts and egg capsules in four species of euholognathan stoneflies was investigated. The characteristic features found were as follows: (i) numerous, long ovarioles, that open individually to the extensively folded, lateral oviducts; (ii) a thin, morphologically undifferentiated chorion; (iii) a thick gelatinous layer (extrachorion) which acts as an adhesive layer fixing the eggs to the substrate. Additionally, in the larval ovariole of Leuctra sp. the terminal filament anlage and clusters of germ cells have been found. These observations are in agreement with the classification of stonefly ovaries as primary (true) panoistic.  相似文献   

17.
Coccoids (Coccinea, Coccoidea, Coccomorpha, scale insects, scales) are a highly diverse group of ectoparasitic insects. They comprise 2 subgroups: primitive archaeococcoids (= Orthezioidea sensu Koteja) and advanced neococcoids (= Coccoidea sensu Koteja). The ovaries of coccoids consist of numerous short telotrophic-meroistic ovarioles. The ovarioles of all investigated species share common characters (e.g. the same mechanism of ovariole development, lack of terminal filaments, occurrence of single oocytes in the vitellaria) supporting the concept of monophyletic origin of this group. Despite these characteristics, the ovaries of archaeococcoids and neococcoids differ in the number of germ cells (oocytes + trophocytes) constituting a single ovariole. In primitive families (Ortheziidae, Margarodidae), this number is relatively large (15-58), whereas in advanced ones (Pseudococcidae, Kermesidae, Eriococcidae, Cryptococcidae, Coccidae, Diaspididae) it is small and usually does not exceed 8. The comparative analysis of the ovary structure in the representatives of Coccinea and closely related Aphidinea (aphids) has revealed that: (1) the organization of archaeococcoid ovaries is more similar to those of aphids than to neococcoids and (2) during the evolution of Coccinea a gradual reduction in the number of germ cells in ovarioles took place.  相似文献   

18.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

19.
马娜  花保祯 《昆虫学报》2010,53(11):1220-1226
卵巢管结构及卵子发生过程在探讨昆虫系统发育关系中有重要意义, 深入研究长翅目昆虫卵巢管结构及卵子发生可为确定其在全变态类昆虫中的系统发育地位提供依据。本文利用光学显微镜和扫描、透射电子显微镜技术研究了刘氏蝎蛉Panorpa liui Hua卵巢管超微结构及卵子发生过程。结果表明:蝎蛉卵巢由12根多滋式卵巢小管组成, 每个卵巢小管分为端丝、生殖区和生长区。根据滋养细胞、卵母细胞及滤泡细胞的变化, 卵子发生过程可分为5个阶段:卵黄发生前早期、卵黄发生前中期、卵黄发生前后期、卵黄发生期及卵壳形成期。在卵黄发生期, 滋养细胞为卵母细胞提供养分后逐渐消亡, 而此时的卵母细胞可通过滤泡之间的细胞间隙从血淋巴中获取营养。在卵壳形成期间, 3种不同类型的滤泡细胞参与形成不同区域的卵壳, 从而形成不同花饰的卵壳表面。据此推测, 与其他目的滋养细胞数目相比, 每个卵室中2次有丝分裂形成3个滋养细胞可能是比较原始的特征, 表明长翅目昆虫可能是全变态类群中近基部的分支。  相似文献   

20.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号