首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex-biased dispersal is well known for birds and mammals, typically by females and males, respectively. Little is known about general patterns of sex-biased dispersal in other animal taxa. We reviewed return rates for a model group of invertebrates (damselflies) and explored putative costs and benefits of dispersal by males and females. We used published capture–mark–recapture data and examined whether a sex bias existed in likelihood of recapture at least once, at both emergence and/or breeding sites. We assessed whether this metric of likelihood of recapture was indicative of dispersal or philopatry, and whether any emerging pattern(s) were consistent across damselfly families. Using a meta-analysis, we found a higher likelihood of recapture at least once for males than for females at both natal sites and breeding sites, which seemed attributable to higher female-biased dispersal, although female-biased mortality cannot be discounted particularly for some species. Sex biases in dispersal among damselflies may be understood based on sex differences in maturation rate and foraging behaviour, both of which should affect the costs and benefits of dispersing. This hypothesis may be useful for explaining patterns of dispersal in other animal taxa.  相似文献   

2.
3.
4.
5.
In their winter quarters, migrant birds may either remain within a small area (resident strategy) or move frequently over a large area looking for locally abundant food (transient strategy). It has been suggested that both strategies could simultaneously occur in the same population. We used time-since-marking capture–recapture models to infer the coexistence of these two behavioural strategies (transient and resident) among wintering Blackcaps Sylvia atricapilla using weekly recapture data over a 7-year period. A related question is whether Blackcaps, if surviving to the next winter, always return to the same wintering area, so we also used this approach to analyse winter site fidelity and to estimate annual survival probabilities. Model selection supported the existence of heterogeneity in survival estimates for both the within-season and the interannual survival probabilities, i.e. there was evidence for the existence of transients. It was estimated that 26% of the Blackcaps were resident during the winter. Mean apparent annual survival probability was 0.46 (se = ±0.11). However, there was some evidence suggesting that not all individuals showed winter site fidelity. The estimated proportion of individuals that, if alive, returned to the wintering area was 28%. This is the first study to show the existence of these two behavioural strategies (residence and transience) among wintering Blackcaps, and the first confirming this pattern using capture–recapture models. These models considering transient and resident dynamics may become an important tool with which to analyse wintering strategies.  相似文献   

6.
7.
1. The harbour seal population Phoca vitulina in the entire Wadden Sea was severely depleted due to a virus-epizootic during 1988. A comprehensive study on the population biology and activity patterns was subsequently initiated to design a management and conservation plan. The main objective of this study was to estimate harbour seal abundance in the different regions of the Wadden Sea.
2. We investigated the potential of a mark–recapture experiment using VHF radio-tags in combination with repeated aerial surveys to estimate the number of harbour seals in the Dutch part of the Wadden Sea. The number of harbour seals hauled-out and the presence of any radio-tagged seals was monitored during seven aerial surveys of all known haul-out sites in the Dutch Wadden Sea over the 1994 breeding season.
3. A maximum likelihood (ML) estimator was developed to infer the rate of tag-loss and the size of the local prepupping population.
4. The ML estimate of the number of harbour seals in the Dutch Wadden Sea was 1536 (95% confidence limits were 1225 and 2200). The corresponding maximum proportion of seals hauled-out was 68%.
5. The use of VHF radio-tags which can be monitored from the air provides a way of correcting aerial survey counts for the proportion of harbour seals hauled-out during the surveys. Since haul-out behaviour may be influenced by local conditions, such as exposure time of sand banks, we recommend this technique be repeated in other areas of the Wadden Sea rather than using the estimates from the current study in other areas.  相似文献   

8.
9.
10.
11.
1. There may be bias associated with mark–recapture experiments used to estimate age and growth of freshwater mussels. Using subsets of a mark–recapture dataset for Quadrula pustulosa, I examined how age and growth parameter estimates are affected by (i) the range and skew of the data and (ii) growth reduction due to handling. I compared predictions from von Bertalanffy growth models based on mark–recapture data with direct observation of mussel age and growth inferred from validated shell rings. 2. Growth models based on a dataset that included observations from a wide range of length classes (spanning ≥ the upper 50% of the population length range) produced only slightly biased age estimates for small and medium‐sized individuals (overestimated by 1–2 years relative to estimates from validated shell rings) but estimates became increasingly biased for larger individuals. Growth models using data that included only observations of larger animals (< the upper 50% of length range) overestimated age for all length classes, and estimated maximum age was two to six times greater than the maximum age observed in the population (47 years). Similarly, growth models using a left‐skewed dataset overestimated age. 3. Reductions of growth due to repeated handling also resulted in overestimates of age. The estimated age of mussels that were handled in two consecutive years was as much as twice that of mussels that were handled only once over the same period. Assuming a constant reduction in the annual rate of growth, handling an individual for five consecutive years could result in an estimated age that is five times too high. 4. These findings show that mark–recapture methods have serious limitations for estimating mussel age and growth. A previous paper (Freshwater Biology, 46, 2001, 1349) presented longevity estimates for three mussel species that were an order of magnitude higher than estimates inferred from shell rings. Because those estimates of extreme longevity were based on mark–recapture methods and subject to multiple, additive sources of bias, they cannot be considered accurate representations of life span and cannot be used to conclude that traditional methods of bivalve ageing by interpretation of shell rings are flawed.  相似文献   

12.
13.
14.
In many animal populations, demographic parameters such as survival and recruitment vary markedly with age, as do parameters related to sampling, such as capture probability. Failing to account for such variation can result in biased estimates of population‐level rates. However, estimating age‐dependent survival rates can be challenging because ages of individuals are rarely known unless tagging is done at birth. For many species, it is possible to infer age based on size. In capture–recapture studies of such species, it is possible to use a growth model to infer the age at first capture of individuals. We show how to build estimates of age‐dependent survival into a capture–mark–recapture model based on data obtained in a capture–recapture study. We first show how estimates of age based on length increments closely match those based on definitive aging methods. In simulated analyses, we show that both individual ages and age‐dependent survival rates estimated from simulated data closely match true values. With our approach, we are able to estimate the age‐specific apparent survival rates of Murray and trout cod in the Murray River, Australia. Our model structure provides a flexible framework within which to investigate various aspects of how survival varies with age and will have extensions within a wide range of ecological studies of animals where age can be estimated based on size.  相似文献   

15.
16.
Detecting senescence in wild populations and estimating its strength raise three challenges. First, in the presence of individual heterogeneity in survival probability, the proportion of high‐survival individuals increases with age. This increase can mask a senescence‐related decrease in survival probability when the probability is estimated at the population level. To accommodate individual heterogeneity we use a mixture model structure (discrete classes of individuals). Second, the study individuals can elude the observers in the field, and their detection rate can be heterogeneous. To account for detectability issues we use capture–mark–recapture (CMR) methodology, mixture models and data that provide information on individuals’ detectability. Last, emigration to non‐monitored sites can bias survival estimates, because it can occur at the end of the individuals’ histories and mimic earlier death. To model emigration we use Markovian transitions to and from an unobservable state. These different model structures are merged together using hidden Markov chain CMR models, or multievent models. Simulation studies illustrate that reliable evidence for survival senescence can be obtained using highly heterogeneous data from non site‐faithful individuals. We then design a tailored application for a dataset from a colony of black‐headed gull Chroicocephalus ridibundus. Survival probabilities do not appear individually variable, but evidence for survival senescence becomes significant only when accounting for other sources of heterogeneity. This result suggests that not accounting for heterogeneity leads to flawed inference and/or that emigration heterogeneity mimics survival heterogeneity and biases senescence estimates.  相似文献   

17.
Growth and postspawning survival of lumpfish Cyclopterus lumpus are described by mark‐recapture experiments using juveniles in offshore areas in the north‐east Atlantic Ocean and spawning adults in coastal Norway and Iceland. A female fish tagged as a juvenile and recaptured as an adult matured in a period of 18 months, providing the first observation on development in a wild C. lumpus. The von Bertalanffy growth function, fitted to data from recaptured fish, was used to estimate K and L and recaptured fish spawning after a year at liberty indicated a postspawning survival of c. 10% in Iceland.  相似文献   

18.
19.
  1. In capture–recapture studies, recycled individuals occur when individuals lose all of their tags and are recaptured as though they were new individuals. Typically, the effect of these recycled individuals is assumed negligible.
  2. Through a simulation‐based study of double‐tagging experiments, we examined the effect of recycled individuals on parameter estimates in the Jolly–Seber model with tag loss (Cowen & Schwarz, 2006). We validated the simulation framework using long‐term census data of elephant seals.
  3. Including recycled individuals did not affect estimates of capture, survival, and tag‐retention probabilities. However, with low tag‐retention rates, high capture rates, and high survival rates, recycled individuals produced overestimates of population size. For the elephant seal case study, we found population size estimates to be between 8% and 53% larger when recycled individuals were ignored.
  4. Ignoring the effects of recycled individuals can cause large biases in population size estimates. These results are particularly noticeable in longer studies.
  相似文献   

20.
Insect outbreaks exert landscape-level influences, yet quantifying the relative contributions of various exogenous and endogenous factors that contribute to their pattern and spread remains elusive. We examine an outbreak of mountain pine beetle covering an 800 thousand ha area on the Chilcotin Plateau of British Columbia, Canada, during the 1970s and early 1980s. We present a model that incorporates the spatial and temporal arrangements of outbreaking insect populations, as well as various climatic factors that influence insect development. Onsets of eruptions of mountain pine beetle demonstrated landscape-level synchrony. On average, the presence of outbreaking populations was highly correlated with outbreaking populations within the nearest 18  km the same year and local populations within 6 km in the previous two years. After incorporating these spatial and temporal dependencies, we found that increasing temperatures contributed to explaining outbreak probabilities during this 15  yr outbreak. During collapse years, landscape-level synchrony declined while local synchrony values remained high, suggesting that in some areas host depletion was contributing to population decline. Model forecasts of outbreak propensity one year in advance at a 12 by 12  km scale provided 80% accuracy over the landscape, and never underestimated the occurrence of locally outbreaking populations. This model provides a flexible approach for linking temperature and insect population dynamics to spatial spread, and complements existing decision support tools for resource managers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号