首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mating-type-specific, membrane thiol peptidase (referred to as trigger peptidase) that seems to play a key role in the transmembrane signaling of the lipopeptidyl mating pheromone rhodotorucine A at the cell surface of mating type a cells of Rhodosporidium toruloides (T. Miyakawa, M. Kaji, T. Yasutake, Y.K. Jeong, E. Tsuchiya, and S. Fukui, J. Bacteriol. 162:294-299, 1985) was purified to homogeneity and characterized. The following lines of evidence support the contention that the enzyme we purified was the trigger peptidase: the identical specificity of hydrolysis at the Arg-Asn sequence of rhodotorucine A and the sensitivity of the reaction to sulfhydryl-blocking reagents; the identical specificity for the substrate, with a strict requirement for the presence of the lipid moiety; and the absence of the corresponding activity in the pheromone-producing strain (mating type A) and in a sterile mutant strain, M-39 (type a), that lacks trigger peptidase activity in vivo. The apparent molecular weight of trigger peptidase was estimated to be 68,000 by Sepharose 6B gel filtration in the presence of octylglucoside and 63,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trigger peptidase alone was inactive but exhibited enzymatic activity with the simultaneous addition of Ca2+, membrane phospholipids, and a nonionic detergent such as octylglucoside. The concentration of Ca2+ required for maximum activation was approximately 1 mM. Only Mn2+ could replace Ca2+ at comparable concentrations. Among the phospholipids tested, only phosphatidylserine and phosphatidylethanolamine supported trigger peptidase activation. Solubilized trigger peptidase was strongly inhibited by antipain and phosphoramidon.  相似文献   

2.
Direct addition of physiological concentrations of rhodotorucine A, a lipopeptide mating pheromone of Rhodosporidium toruloides, to the particulate fraction of the target cell strongly inhibited Ca2+-ATPase activity. The pheromone effect was mating-type specific. Membrane Ca2+-ATPase solubilized by a nonionic detergent and further purified by calmodulin-affinity chromatography was also inhibited by the pheromone. Rhodotorucine A S-oxide, a biologically inactive analogue, had no effect on Ca2+-ATPase. The results suggested that the inhibition of membrane Ca2+-ATPase is a critical event in the signaling of mating pheromone and the inhibition of membrane Ca2+-pump could be responsible for the pheromone-induced rapid raise of intracellular Ca2+ concentration reported.  相似文献   

3.
A trypsin-type endopeptidase (Kamiya et al., Biochem. Biophys. Res. Commun. 94:855-860, 1980) responsible for the metabolism of rhodotorucine A, the farnesyl undecapeptide mating pheromone secreted by mating type A cells of Rhodosporidium toruloides, was biologically characterized. Metabolic activity was found to be present exclusively on the cell surface of the pheromone target cell. The activity was highly specific to the pheromone, and a biologically inactive analog which has the complete amino acid sequence of rhodotorucine A but lacks the farnesyl residue was not metabolized by intact cells. Pheromone metabolism was inhibited by trypsin substrates such as tosyl-L-arginine methyl ester. The presence of tosyl-L-arginine methyl ester strongly inhibited the sexual differentiation induced by the pheromone at a concentration which did not affect the vegetative growth of R. toruloides. Pheromone-induced sexual differentiation was also strongly inhibited by a metabolizable analog, rhodotorucine A S-oxide, but not by a non-metabolizable one. In mutants defective in early processes of mating, the decrease in the pheromone metabolic activity correlated well with the extent of loss of sensitivity to the pheromone. Both the pheromone metabolism and the capacity for sexual differentiation of a sterile mutant were restored concomitantly with reversion from the sterile to the fertile phenotype. These results suggested that metabolism of the mating pheromone plays an essential role in the process of sexual differentiation in R. toruloides.  相似文献   

4.
Rhodotorucine A, a lipopeptide mating pheromone, is secreted from mating type A cells of Rhodosporidium toruloides and induces sexual differentiation of the opposite mating type a cells. Genome of A-type cells contains three homologous genes (RHA1, RHA2, and RHA3) encoding rhodotorucine A. Genomic Southern blot analysis using RHA1 DNA as a probe showed that RHA1 strongly hybridize with A-type genomic DNA but weakly with a-type, suggesting that the sequences of RHA genes were dissimilar in the opposite a-type genome. The range of dissimilar regions in a-type genome was searched using RHA-flanking DNA segments as probes. The result suggests that a-type genome lacks sequences coding for rhodotorucine A and its 5 upstream but contains its 3 non-coding sequences. The absence of mating pheromone genes in the opposite mating type genome suggests that the expression of mating-type-specific genes in R. toruloides is not controlled trans-criptionally, as shown in the yeast Saccharomyces cerevisiae.  相似文献   

5.
6.
The involvement of protein sulfhydryls for the signaling of rhodotorucine A, a mating pheromone produced by mating type A cells of Rhodosporidium toruloides, was investigated by the use of sulfhydryl compounds. The sulfhydryl-blocking reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB; Ellman's reagent) strongly inhibited both the biological effect of the pheromone on the recipient cell and the hydrolysis of the pheromone, which is catalyzed by the mating type-specific surface endopeptidase of the recipient cell. Conversely, the two reactions were markedly enhanced by the presence of the reducing reagent dithiothreitol. The inhibitory effect of DTNB on the pheromone response of the recipient cell was specific to an initial stage of the differentiation; once it had initiated, the reagent had no effect on its progression. The results suggested that dithiothreitol enhances and DTNB impairs the efficiency with which the pheromone triggers sexual d differentiation. The reaction of DTNB with cellular protein sulfhydryls was highly restricted to those at the exterior surface of the membrane due to the impermeability of the reagent through the membrane. Phosphorylation of endogenous proteins, which is modulated by the pheromone added to an in vitro phosphorylation system, was also blocked by DTNB. The results showed that sulfhydryl groups are involved in the pheromone hydrolysis by the surface endopeptidase of the recipient cell and that pheromone metabolism is indispensable for the signaling reaction. We suggest that the modulation of protein phosphorylation of membrane proteins by the pheromone is an initial transmembrane response coupled to pheromone metabolism.  相似文献   

7.
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.  相似文献   

8.
9.
The role of Ca2+ for the signaling of rhodotorucine A, a mating pheromone of Rhodosporidium toruloides, was investigated. The efficiency with which the target cells responded to the mating pheromone was dependent on the Ca2+ concentration in the medium. The pheromone induced a very rapid and transient increase of Ca2+ uptake in the recipient cell. We concluded that the transient increase in the intracellular Ca2+ concentration could play an essential role in the control of differentiation by the pheromone.  相似文献   

10.
K Abe  I Kusaka    S Fukui 《Journal of bacteriology》1975,122(2):710-718
The events which occur in the early stages of the mating process of the yeast Rhodosporidium toruloides between strains M-919 (mating type A) and M-1057 (mating type a) were investigated. In preliminary experiments we determined the frequency of mating by two newly designed methods: the liquid culture method and the membrane-filter microculture method. The mating frequencies of strains M-919 and M-1057 were 89% in the liquid culture method and 62% in the membrane-filter microculture method. The early stages in the mating process included the following events: (i) M-919 cells produce constitutively the extracellular inducing substance (A factor), (ii) M-1057 cells receive A factor, and in response to it they form mating tubes and secrete another inducing substance (a factor), (iii) M-919 cells receive a factor, and in response to it they form mating tubes, (iv) mating tubes elongate to the cells or the tubes of mating partner, (v) tips of the growing tubes recognize the opposite mating type cells or their tubes, followed by cell-to-cell fusion.  相似文献   

11.
Wang Y  Bruckner R  Stein RL 《Biochemistry》2004,43(1):265-270
Prokaryotic signal peptidases are membrane-bound enzymes. They cleave signal peptides from precursors of secretary proteins. To study the enzyme in its natural environment, which is phospholipid bilayers, we developed a method that allows us effectively to incorporate full-length Escherichia coli signal peptidase I into phospholipid vesicles. The membrane-bound signal peptidase showed high activity on a designed substrate. The autolysis site of the enzyme is separated from its catalytic site in vesicles by the lipid bilayer, resulting in a dramatic decrease of the autolysis rate. Phosphotidylethanolamine, which is the most abundant lipid in Escherichia coli inner membrane, is required to maintain activity of the membrane-incorporated signal peptidase. The maximal activity is achieved at about 55% phosphotidylethanolamine. Negatively charged lipids, which are also abundant in Escherichia coli inner membrane, enhances the activity of the enzyme too. Its mechanism, however, cannot be fully explained by its ability to increase the affinity of the substrate to the membrane. A reaction mechanism was developed based on the observation that cleavage only takes place when the enzyme and the substrate are bound to the same vesicle. Accordingly, a kinetic analysis is presented to explain some of the unique features of phospholipid vesicles incorporated signal peptidase, including the effect of lipid concentration and substrate-vesicle interaction.  相似文献   

12.
The Saccharomyces cerevisiae pheromone a-factor is produced by a cells and interacts with alpha cells to cause cell cycle arrest and other physiological responses associated with mating. Two a-factor structural genes, MFA1 and MFA2, have been previously cloned with synthetic probes based on the a-factor amino acid sequence (A. Brake, C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather, cited in M.-J. Gething [ed.], Protein transport and secretion, 1985). We have examined the function of these genes in a-factor production and mating by construction and analysis of chromosomal null mutations. mfa1 and mfa2 single mutants each exhibited approximately half the wild-type level of a-factor activity and were proficient in mating, whereas the mfa1 mfa2 double mutant produced no a-factor and was unable to mate. These results demonstrate that both genes are functional, that each gene makes an equivalent contribution to the a-factor activity and mating capacity of a cells, and that a-factor plays an essential role in mating. Strikingly, exogenous a-factor did not alleviate the mating defect of the double mutant, suggesting that an a cell must be producing a-factor to be an effective mating partner.  相似文献   

13.
14.
Wild-type S. cerevisiae cells of both mating types prefer partners producing high levels of pheromone and mate very infrequently to cells producing no pheromone. However, some mutants that are supersensitive to pheromone lack this ability to discriminate. In this study, we provide evidence for a novel role of alpha pheromone receptors in mating partner discrimination that is independent of the known G protein-mediated signal transduction pathway. Furthermore, in response to pheromone, receptors become localized to the emerging region of morphogenesis that is positioned adjacent to the nucleus, suggesting that receptor localization may be involved in mating partner discrimination. Actin, myosin 2, and clathrin heavy chain are involved in mating partner discrimination, since strains carrying mutations in the genes encoding these proteins result in a small but significant defect in mating partner discrimination.  相似文献   

15.
16.
17.
Summary A membrane potential (inside negative) across the plasma membrane of the obligatory aerobic yeastRhodotorula gracilis is indicated by the intracellular accumulation of the lipid-soluble cations tetraphenylphosphonium and triphenylmethylphosphonium. The uptake of these ions is inhibited by anaerobic conditions, by uncouplers, by addition of diffusible ions, or by increase of the leakiness of the membrane caused by the polyene antibiotic nystatin. The membrane potential is strongly pH-dependent, its value increasing with decreasing extracellular proton concentration. Addition of transportable monosaccharides causes a depolarization of the electrical potential difference, indicating that the H+-sugar cotransport is electrogenic. The effect on the membrane potential is enhanced by increasing the sugar concentration. The half-saturation constants of depolarization ford-xylose andd-galactose were comparable to those of the corresponding transport system for the two sugars. All agents that depressed the membrane potential inhibited monosaccharide transport; hence the membrane potential provides energy for active sugar transport in this strain of yeast.  相似文献   

18.
The class 4 P-type ATPases (“flippases”) maintain membrane asymmetry by translocating phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the cytosolic leaflet of the plasma membrane. In Saccharomyces cerevisiae, five related gene products (Dnf1, Dnf2, Dnf3, Drs2, and Neo1) are implicated in flipping of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. In MATa cells responding to α-factor, we found that Dnf1, Dnf2, and Dnf3, as well as the flippase-activating protein kinase Fpk1, localize at the projection (“shmoo”) tip where polarized growth is occurring and where Ste5 (the central scaffold protein of the pheromone-initiated MAPK cascade) is recruited. Although viable, a MATa dnf1∆ dnf2∆ dnf3∆ triple mutant exhibited a marked decrease in its ability to respond to α-factor, which we could attribute to pronounced reduction in Ste5 stability resulting from an elevated rate of its Cln2⋅Cdc28-initiated degradation. Similarly, a MATa dnf1∆ dnf3∆ drs2∆ triple mutant also displayed marked reduction in its ability to respond to α-factor, which we could attribute to inefficient recruitment of Ste5 to the plasma membrane due to severe mislocalization of the cellular phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate pools. Thus proper remodeling of plasma membrane aminoglycerolipids and phosphoinositides is necessary for efficient recruitment, stability, and function of the pheromone signaling apparatus.  相似文献   

19.
20.
Signaling by the Wnt family of secreted proteins plays an important role in animal development and is often misregulated in carcinogenesis. Wnt signal transduction is controlled by the rate of degradation of beta-catenin by a complex of proteins including glycogen synthase kinase 3 (GSK3), adenomatous polyposis coli, and Axin. Dishevelled is required for Wnt signal transduction, and its activation results in stabilization of beta-catenin. However, the biochemical events underlying this process remain largely unclear. Here we show that Xenopus Dishevelled (Xdsh) interacts with a Xenopus Axin-related protein (XARP). This interaction depends on the presence of the Dishevelled-Axin (DIX) domains in both XARP and Xdsh. Moreover, the same domains are essential for signal transduction through Xdsh. Finally, our data point to a possible mechanism for signal transduction, in which Xdsh prevents beta-catenin degradation by displacing GSK3 from its complex with XARP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号