首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

2.
Structural studies were carried out on the O-polysaccharide fraction obtained by mild acid treatment of the lipopolysaccharide from Pseudomonas aeruginosa IID 1009 (ATCC 27585). The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-L-galactosaminuronic acid in a molar ratio of 1:1:1. The results from analysis of fragments obtained by hydrogen fluoride hydrolysis of O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic analysis, led to the most likely structure of the repeating units of the polymer chain ----4)L-GalNAcA(alpha 1----3)D-QuiNAc(alpha 1----3)L-Rha(alpha 1----, in which about 70% of the rhamnose residues were O-acetylated at C-2. This structure coincides with that of the repeating unit of Lanyi 02 a,b polysaccharides.  相似文献   

3.
Structural studies were carried out on the teichoic acids in cell walls of Listeria monocytogenes serotypes 3a, 4b, 4f, 6, and 7. The structure of the dephosphorylated repeating units, obtained by treatment with 46% hydrogen fluoride or alkaline hydrolysis, was examined by methylation analysis, acetolysis, and 1H-NMR spectroscopy. The results of Smith degradation of the teichoic acids and 13C-NMR spectroscopy led to the following most likely structures of the repeating units of the teichoic acids:----1-[N-acetylglucosaminyl(alpha 1----4)]ribitol-5-phosphate----for serotype 3a,----4-[galactosyl(alpha 1----6)][glucosyl(beta 1----3)]N -acetylglucosaminyl(beta 1----2)ribitol-5-phosphate----for serotype 4b,----4-[galactosyl(alpha 1----6)][N -acetylglucosaminyl(alpha 1----3)]N-acetylglucosaminyl(beta 1----2)ribitol -5-phosphate----for serotype 4f,----4-N-acetylglucosaminyl(beta 1----4)ribitol -5-phosphate----for serotype 6, and----1-ribitol-5-phosphate----for serotype 7. About 40% of the repeating units of the teichoic acid from serotype 4f were not substituted at C-3 of beta-N-acetylglucosaminyl residues.  相似文献   

4.
The structure of polysaccharide prepared by lysozyme digestion from the cell wall of Propionibacterium acnes strain C7 was examined. The polysaccharide fraction was composed of glucose, galactose, mannose, galactosamine, and diaminomannuronic acid in a molar ratio of 1:1:0.3:1:2. By Smith degradation of the polysaccharide, diaminouronic acid-containing fractions were obtained, and the configuration of diaminouronic acid was identified as 2,3-diacetamido-2,3-dideoxymannuronic acid [Man(NAc)2A] by means of 1H-NMR and 13C-NMR spectroscopic analyses. The results of analyses involving methylation and partial acid hydrolysis led to the conclusion that the polysaccharide has the repeating unit----6)Gal(alpha 1----4)Man(NAc)2A(beta 1----6)Glc(alpha 1----4)Man(NAc)2A (beta 1----3)GalNAc(beta 1--. In addition, a portion of the galactose residues were substituted at C-4 by alpha 1----2 linked mannotriose.  相似文献   

5.
Lipopolysaccharides were isolated from the phenol layer on aqueous phenol extraction of cells of Pseudomonas aeruginosa O11 (Lányi classification), strains 170021 and 170040. On mild acid degradation of the lipopolysaccharides, with the subsequent gel-filtration on Sephadex G-50, neutral O-specific polysaccharides made up of 6-deoxysugars alone were obtained. Two 2-acetamido-2,6-dideoxy-L-galactose (LFucNAc), 2-acetamido-2,6-dideoxy-D-glucose (DQuiNAc) and L-rhamnose (LRha) residues were found to be the components of the strain 170021 polysaccharide repeating units; those of strain 170040 contained the same monosaccharides, but, instead of 2-acetamido-2,6-dideoxy-D-glucose residue, that of 2-acetamido-2,6-dideoxy-D-galactose (DFucNAc) was present. On the basis of the 13C nuclear magnetic resonance data, methylation analysis and three successive Smith degradations the following structures were determined for the polysaccharide repeating units: strain 170021----2) LRha(alpha 1----3)LFucNAc(alpha 1----3)LFucNAc(alpha 1----3)DQuiNAc(beta 1----; strain 170040,----2)LRha(alpha 1----3)LFucNAc-(alpha 1----3)LFucNAc(alpha 1----3)DFucNAc(beta 1----; differing from one another by configuration of C-4 of 2-acetamido-2,6-dideoxy-D-hexopyranose only.  相似文献   

6.
The specific capsular polysaccharide produced by Actinobacillus pleuropneumoniae serotype 15 was determined to be a high-molecular-mass polymer having [alpha]D + 69 degrees (water) and composed of a linear backbone of phosphate diester linked disaccharide units of 2-acetamido-2-deoxy-D-glucose (D-GlcNAc) and 2-acetamido-2-deoxy-D-galactose (D-GalNAc) residues (1:1). Thirty percent of the D-GalNAc residues were substituted at O-4 by beta-D-galactopyranose (beta-D-Galp) residues. Through the application of chemical and NMR methods, the capsule, which defines the serotype specificity of the bacterium, was found to have the structure [structure: see text]. The O-polysaccharide (O-PS) component of the A. pleuro pneumoniae serotype 15 lipopolysaccharide (LPS) was characterized as a linear unbranched polymer of repeating pentasaccharide units composed of D-glucose (2 parts) and D-galactose (3 parts), shown to have the structure [structure: see text]. The O-PS was chemically identical with the O-antigen previously identified in the LPSs produced by A. pleuro pneumoniae serotypes 3 and 8.  相似文献   

7.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

8.
The structure of the core oligosaccharide moiety of the lipopolysaccharide (LPS) of Plesiomonas shigelloides O54 (strain CNCTC 113/92) has been investigated by (1)H and (13)C NMR, fast atom bombardment mass spectrometry (MS)/MS, matrix-assisted laser-desorption/ionization time-of-flight MS, monosaccharide and methylation analysis, and immunological methods. It was concluded that the main core oligosaccharide of this strain is composed of a decasaccharide with the following structure: (see text) in which l-alpha-D-Hepp is l-glycero-alpha-D-manno-heptopyranose. The nonasaccharide variant of the core oligosaccharide ( approximately 10%), devoid of beta-D-Glcp substituting the alpha-D-GlcpN at C-6, was also identified. The core oligosaccharide substituted at C-4 of the outer core beta-D-Glcp residue with the single O-polysaccharide repeating unit was also isolated yielding a hexadecasaccharide structure. The determination of the monosaccharides involved in the linkage between the O-specific polysaccharide part and the core, as well as the presence of -->3)-D-beta-D-Hepp-(1--> instead of -->3,4)-D-beta-D-Hepp-(1--> in the repeating unit, revealed the structure of the biological repeating unit of the O-antigen. The core oligosaccharides are not substituted by phosphate residues and represent novel core type of bacterial LPS that is characteristic for the Plesiomonas shigelloides serotype O54. Serological screening of 69 different O-serotypes of P. shigelloides suggests that epitopes similar to the core oligosaccharide of serotype O54 (strain CNCTC 113/92) might also be present in the core region of the serotypes O24 (strain CNCTC 92/89), O37 (strain CNCTC 39/89) and O96 (strain CNCTC 5133) LPS.  相似文献   

9.
Structural studies were carried out on the O-polysaccharide fraction obtained from the lipopolysaccharide of Pseudomonas aeruginosa IID 1012, the standard strain of Homma serogroup K, by mild acid treatment. The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-D-galactosaminuronic acid. The results from analysis of fragments obtained by acid hydrolysis and Smith degradation of the O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic measurement of the polysaccharide, led to the most likely structure of the repeating units of the polymer chain, ----4)D-GalNAcA(alpha 1----3)D-QuiNAc(beta 1----2)L-Rha(alpha 1----3)L-Rha(alpha 1----, in which about 20% of the N-acetylgalactosaminuronic acid residues were in an amide form and about 75% of the same residues were O-acetylated at C-3.  相似文献   

10.
The primary structure of teichuronic acid in Bacillus subtilis AHU 1031   总被引:3,自引:0,他引:3  
Structural studies were carried out on the acidic polysaccharide fraction obtained from lysozyme digest of the cell walls of Bacillus subtilis AHU 1031. The polysaccharide fraction contained N- acetylmannosaminuronic acid ( ManNAcA ), N-acetylglucosamine (GlcNAc), glucose, glycerol and phosphorus in a molar ratio of 2:2:4:1:1, together with glycopeptide components. The results of analyses involving Smith degradation, chromium trioxide oxidation, methylation and proton magnetic resonance spectroscopy led to the conclusion that the backbone chain of the polysaccharide has the repeating unit----6)Glc(alpha 1----3/4) ManNAcA (beta 1----4)GlcNAc(beta 1----. About 50% of the N-acetylglucosamine residues in the backbone chain seem to be substituted at C-3 by the glycosidic branches, glycerol phospho-6-glucose, while the other half seem to be substituted by glucose.  相似文献   

11.
Pneumococcal lipoteichoic acid was extracted and purified by a novel, quick and effective procedure. Structural analysis included methylation, periodate oxidation, Smith degradation, oxidation with CrO3, and fast-atom-bombardment mass spectrometry. Hydrolysis with 48% (by mass) HF and subsequent phase partition yielded the lipid anchor (I), the dephosphorylated repeating unit of the chain (II) and a cleavage product of the latter (III). The proposed structures are: (I) Glc(beta 1----3)AATGal(beta 1----3)Glc(alpha 1----3)acyl2Gro, (II) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc(beta 1----1)ribitol and (III) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose, and all sugars are in the pyranose form and belong to the D-series. Alkaline phosphodiester cleavage of lipoteichoic acid, followed by treatment with phosphomonoesterase, resulted in the formation of II and IV, with IV as the prevailing species: [sequence: see text] The linkage between the repeating units was established as phosphodiester bond between ribitol 5-phosphate and position 6 of the glucosyl residue of adjacent units. The chain was shown to be linked to the lipid anchor by a phosphodiester between its ribitol 5-phosphate terminus and position 6 of the non-reducing glucosyl terminus of I. The lipoteichoic acid is polydisperse: the chain length may vary between 2 and 8 repeating units and variations were also observed for the fatty acid composition of the diacylglycerol moiety. Preliminary results suggest that repeating units II and IV are enriched in separate molecular species. All species were associated with Forssman antigenicity, albeit to a various extent when related to the non-phosphocholine phosphorus. Owing to its unique structure, the described macroamphiphile may be classified as atypical lipoteichoic acid.  相似文献   

12.
Lipopolysaccharides of Yersinia enterocolitica serovars O:5 and O:5,27 were shown to have a similar sugar composition, consisting of L-rhamnose, D-glucose, D-galactose, D- and L-glycero-D-manno-heptose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 3-deoxy-D-manno-octulosonate and D-threo-pent-2-ulose (D-xylulose). Partial hydrolysis of lipopolysaccharides with acetic acid produced rhamnans with the following repeating unit: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. 13C-NMR and methylation studies of the lipopolysaccharides gave the following structure for the repeating unit of the two O-specific polysaccharides: ----3)-L-Rha rho(alpha 1----3)-L-Rha rho(alpha 1----3)-L-Rha rho(beta 1----. (formula; see text)  相似文献   

13.
The minor teichoic acid linked to glycopeptide was isolated from lysozyme digests of Bacillus coagulans AHU 1631 cell walls, and the structure of the teichoic acid moiety and its junction with the peptidoglycan were studied. Hydrolysis of the teichoic-acid--glycopeptide complex with hydrogen fluoride gave a nonreducing oligosaccharide composed of glucose, galactose and glycerol in a molar ratio of 3:1:1 which was presumed to be dephosphorylated repeating units of the polymer chain. From the results of structural analysis involving NaIO4 oxidation, methylation and acetolysis, the above fragment was characterized as glucosyl(beta 1----3)glucosyl(beta 1----6)galactosyl(beta 1----6)glucosyl(alpha 1----1/3)glycerol. In addition, the Smith degradation of the complex yielded a phosphorus-containing fragment identified as glycerol-P-6-glucosyl(beta 1----1/3)glycerol. These results led to the most likely structure for the repeating units of the teichoic acid, -6[glucosyl(beta 1----3)]glucosyl(beta 1----6)galactosyl(beta 1----6)glucosyl(alpha 1----1/3)glycerol-P-. The minor teichoic acid, just like the major teichoic acid bound to the linkage unit, was released by heating the cell walls at pH 2.5. The mild alkaline hydrolysis of the minor teichoic acid after reduction with NaB3H4 gave labeled saccharides characterized as glucosyl(beta 1----6)galactitol and glucosyl(beta 1----3)glucosyl(beta 1----6)galactitol, together with a large amount of the unlabeled repeating units of the teichoic acid chain. Thus, the minor teichoic acid chain is believed to be directly linked to peptidoglycan at the galactose residue of the terminal repeating unit without a special linkage sugar unit.  相似文献   

14.
The asparagine-linked sugar chains of the membrane of baby hamster kidney cells and their polyoma transformant were quantitatively released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides thus obtained were fractionated by paper electrophoresis. The neutral oligosaccharides of both cells were exclusively of high mannose type. The acidic oligosaccharides were bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6 (Man alpha 1----3) Man beta 1----4 GlcNAc beta 1----4 (+/- Fuc alpha 1----6) GlcNAc as their cores and Gal beta 1----4 GlcNAc and various lengths of Gal beta 1----4 GlcNAc repeating chains in their outer-chain moieties. Prominent features of these acidic oligosaccharides are that all sialic acid residues were N-acetylneuraminic acid and were linked exclusively at C-3 of the nonreducing terminal galactose residues of the outer chains. Comparative study of oligosaccharides of the two cells by Bio-Gel P-4 column chromatography revealed that transformation of baby hamster kidney cells leads to a reduction in high mannose-type oligosaccharides and an increase in tetraantennary oligosaccharides. Increase of the outer chains linked at C-6 of the Man alpha 1----6 residue of the core is the cause of increase in the relative amount of highly branched oligosaccharides in the polyoma transformant.  相似文献   

15.
Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. These streptococci all coaggregated strongly with both A. viscosus and A. naesludii strains, whereas S. oralis C104 interacted preferentially with certain strains of the latter species. Receptor polysaccharide was isolated from S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The 1H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by 1H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments (1H and 13C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages with the following structure. [----6)Galf(beta 1----3)Galp(beta 1----6)Galf(beta 1----6)GalpNAc(beta 1----3) Galp(alpha 1----1)ribitol(5----PO4-]n  相似文献   

16.
On mild acid degradation of the Pseudomonas cepacia strain IMV 4176 lipopolysaccharide, two polysaccharides were obtained, one of which is a homopolymer of N-acetyl-D-galactosamine and the other is composed of equal amounts of N-acetyl-D-galactosamine and D-ribose. Partial hydrolysis with aqueous oxalic acid caused depolymerization of the heteropolysaccharide, and the homopolysaccharide was isolated in the individual state. On the basis of methylation and 13C NMR analysis, it was concluded that both polysaccharides are built up of disaccharide repeating units having the following structures: ----4)-alpha-D-GalpNAc-(1----4)-beta-D-GalpNAc-(1---- and ----4)-alpha-D-GalpNAc-(1----2)-beta-D-Ribf-(1----. The heteropolysaccharide from P. cepacia strain 4176 is identical by the structure of the repeating unit to the O-specific polysaccharide of P. cepacia strain IMV 4202 (serotype 3), Pseudomonas aeruginosa O12 and Serratia marcescens O14.  相似文献   

17.
The capsular polysaccharide of Klebsiella serotype K40 contained D-mannose, D-glucuronic acid, D-galactose, and L-rhamnose in the approximate molar ratios 1:1:1:2. The primary structure of the capsular polysaccharide has been investigated mainly by methylation analysis, periodate oxidation, characterization of oligosaccharides, base degradation reaction, and 1H and 13CNMR spectroscopy. The polysaccharide does not contain any pyruvic acetal or O-acetyl substitution. It has a pentasaccharide repeating unit of the following primary structure: alpha-D-Manp 1----4 ----4)-beta-D-GlcpA-(1----2)-alpha-L-Rhap-(1----3)-beta-D-Ga lp-(1----2)-alpha- L-Rhap-(1----.  相似文献   

18.
The structure of the group-specific polysaccharide of group G Streptococcus was determined by means of methylation analysis and selective chemical degradations. The anomeric configurations and conformations of the sugar residues were studied by 1H- and 13C-n.m.r. spectroscopy. The tetrasaccharide repeating unit, ----3)-alpha-D-Galp-(1----2)-[alpha-L-Rhap-(1----3)-beta-D-GalpNAc - (1----4)]-alpha-L-Rhap-(1----, was determined.  相似文献   

19.
O-Specific polysaccharide, consisting of D-rhamnose and L-glycero-D-manno-heptose (LD-Hep) in a 2 : 1 ratio, was obtained on the mild acid degradation of the Pseudomonas cepacia IMV 673/2 lipopolysaccharide; monosaccharide LD-Hep has not previously been found in O-specific chains of lipopolysaccharides. On the basis of methylation and 13C-NMR data, it was concluded that the polysaccharide is composed of trisaccharide repeating units having the following structure: ----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----2)-alpha-LD-Hep-(1----  相似文献   

20.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of the V. fluvialis lipopolysaccharide. On the basis of the 13C-NMR data and methylation studies, the following structure was suggested for the polysaccharide repeating unit: ----4)-alpha-L-Rhap-(1----3)-beta-D-ManpNAc-(1---- This structure was confirmed by calculations using known glycosidation effects on 13C chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号