首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory studies were conducted to assess the effect of temperature on the development and survival of the indigenous parasitoid Pnigalio pectinicornis L. on the citrus leaf miner Phyllocnistis citrella Stainton as host, fed on leaves of Citrus sinensis L. Osbck cultivar Washington navel and Citrus reticulata Blanco cultivar Clementine. Experiments were conducted at five constant temperatures ranging from 15 to 32.5 degrees C, with 60 +/- 10% RH and a photoperiod of 14:10 (L:D) h. The relationship between the developmental rate and temperature was determined using both linear and nonlinear (Lactin's formula) models. Developmental time of immature stages tended to be shorter as the temperature increased the range from 15 to 30 degrees C. Mortality was greater at the temperatures extreme tested. Both linear and nonlinear models provided a reliable fit of developmental rates versus temperature for all immature stages. Developmental thresholds that were estimated by the linear model for eggs were higher than those estimated by the nonlinear model. However, higher values of the low developmental threshold for larva and pupa stage of P. pectinicornis were estimated by the Lactin-2 model than that by the linear model. The potential of these models to predict the phenology of this parasitoid and its biological characteristics found in this study are discussed for its proper use as a biological control agent.  相似文献   

2.
Laboratory studies were conducted to assess the effect of temperature on the survival, development, fecundity, and longevity of Helicoverpa armigera (Hübner) at 11 constant temperatures ranging from 12.5 to 40 degrees C, as well as at five alternating temperature regimes (25-10, 30-15, 32.5-17.5, 35-20, and 35-27.5 degrees C) and under a photoperiod of 16:8 (L:D) h. H. armigera reared at constant temperatures did not develop from egg to adult (emergence) outside the temperature range of 17.5-32.5 degrees C. The alternating conditions expanded this range from 10 to 35 degrees C. The lowest developmental thresholds of the immature stages were estimated by a linear model and ranged from 10.17 (pupal stage) to 11.95 degrees C (egg stage) at constant temperature regimes and from 1.1 to 5.5 degrees C, respectively at alternating temperatures. The values of developmental thresholds estimated using the nonlinear (Lactin-2) model were lower than those estimated by the linear model for constant and alternating temperature regimes except for larval and pupal stages at constant temperatures. Mean adult longevity fluctuated from 34.4 d at 15 degrees C to 7.6 d at 35 degrees C. Females reared under all alternating temperature regimes laid more eggs than females reared at any, except the 25 degrees C, constant temperature treatment. The intrinsic rate of increase was highest at 27.5 degrees C, at both the constant and the corresponding alternating temperature regimes (0.147 and 0.139, respectively). Extreme temperatures had a negative effect on life table parameters.  相似文献   

3.
Larvae of Chironomus crassicaudatus Malloch were reared individually at nine constant temperatures from 12.5 to 32.5 degrees C (2.5 degrees C increments) for 120 d. Duration of immature stages (egg, four instars, and pupa), head capsule width of fourth instars, and wing length were recorded. Some adults emerged at all temperatures, except at 12.5 degrees C where individuals developed to fourth instars during the experiment. Sharpe and DeMichele's four-parameter model with high-temperature inhibition described the temperature-dependent developmental rates. The slowest development was observed at 15 degrees C, with developmental rate peaking between 25 and 27.5 degrees C. Developmental rate increased rapidly with increasing temperature up to 20 degrees C, slowed between 20 and 27.5 degrees C, and decreased at temperatures >27.5 degrees C. No developmental inhibition at high temperatures was observed in eggs. The most apparent high-temperature inhibition of development was recorded in fourth instars, which comprised the largest proportion of developmental time. Males developed faster than females, but females had wider larval head capsules and longer wings than males. Adult size was negatively related with temperature in both sexes, but this relationship was steeper in males than in females. Larval size peaked at 20 degrees C, whereas the head capsule width was reduced at temperatures higher and lower than 20 degrees C.  相似文献   

4.
Abstract  The effect of seven constant temperatures from 10 to 40°C (10, 15, 20, 25 30, 35 and 40°C) on the development of eggs, larvae and pupae of rice stemborers viz., Chilo polychrysa (Meyrick), C. suppressalis (Walker), C. partellus (Swinhoe), Scirpophaga incertulas (Walker), S. innotata (Walker) and Sesamia inferens (Walker) were studied. The mean developmental period among constant temperatures (in days) of egg, larva and pupa of six borers differed significantly ( P < 0.0001). The mean percent of development per day of egg, larva and pupa of all borers gradually increased with the increase of constant temperatures. The total developmental period was inversely decreased with the increase of constant temperatures. The lower threshold temperature was found between 10–15°Cand higher threshold temperature between 35–40°C, where no development took place. The mean developmental zero was 8.57±1.71, 7.70±1.01, 8.56±3.25, 10.19±2.19, 8.64±2.68 and 7.91±0.82 for egg, larva and pupa of above-mentioned borers respectively. The total thermal constant of egg, larva and pupa was 705.56, 725.32, 703.30, 556.59, 655.34 and 837.95 degree- days for C. polychrysa, C. suppressalis, C. partellus, S. incertulas, S. innotata and S. inferens respectively. The degree- days required for oviposition of female moths of the six borers was calculated as 99.06, 90.85, 99.29, 75.16, 92.25 and 80.41 respectively. The total degree- days required completing a generation was 804.62, 816.17, 802.59, 631.75, 648.84 and 918.36 respectively.  相似文献   

5.
李家慧  杨群芳  王慧 《昆虫知识》2011,48(4):986-989
室内研究了红珠凤蝶小斑亚种Pachliopta aristolochiae adaeus(Rothschild)在19~31℃范围内5个恒温条件下的发育.结果表明,成虫在19℃时不能交配和产卵,而卵、幼虫和蛹在19~31℃范围内均能完成发育,且发育历期随温度而变化.各温度下,预蛹期最短,幼虫期最长,幼虫龄期随虫龄的增加...  相似文献   

6.
The effect of temperature on development and survival of Chilocorus bipustulatus L. (Coleoptera: Coccinellidae), a predator of many scale insects, was studied under laboratory conditions. The duration of development of egg, first, second, third, and fourth larval instars, pupa, and preovioposition period at seven constant temperatures (15, 17.5, 20, 25, 30, 32.5, and 35°C) was measured. Development time decreased significantly with increasing temperature within the range 15-30°C. Survival was higher at medium temperatures (17.5-30(ο)C) in comparison with that at more extreme temperature regimens (15 and >30(ο)C). Egg and first larval instars were the stages where C. bipustulatus suffered the highest mortality levels at all temperatures. The highest survival was recorded when experimental individuals were older than the third larval instar. Thermal requirements of development (developmental thresholds, thermal constant, optimum temperature) of C. bipustulatus were estimated with application of linear and one nonlinear models (Logan I). Upper and lower developmental thresholds ranged between 35.2-37.9 and 11.1-13.0°C, respectively. The optimum temperature for development (where maximum rate of development occurs) was estimated at between 33.6 and 34.7°C. The thermal constant for total development was estimated 474.7 degree-days.  相似文献   

7.
The objective of the present investigation was to determine the effects of temperature on the granary weevil, Sitophilus granarius L., in the laboratory so that forecasting models based on heat accumulation units could be developed for the pest. Development of S. granarius reared on wheat grains was studied at three constant temperatures (15, 20 and 25?°C) and relative humidity of 70?±?5%. The developmental time was significantly decreased with the increase in temperature. The developmental threshold temperatures estimated for egg, larva, pupa and from egg to adult were 7.79, 7.31, 14.08 and 9.97?°C, respectively. Based on these thresholds, the developmental stages, respectively, needed 92.75, 393.78, 45.04 and 562.36?day degrees to complete their development. Also, about nine generations were calculated for the pest per year under Assiut prevailing conditions. It seems that temperature of 25?°C is the most favourable developmental temperature.  相似文献   

8.
美洲斑潜蝇实验种群生命表的研究   总被引:11,自引:0,他引:11  
在15、20、25、30和35℃五种温度下,观察了美洲斑潜蝇Liriomyza sativae Blanchard实验种群的发育历期、存活率、产卵量、寿命等,组建了实验种群生命表,估测了种群参数。结果表明:随温度升高发育历期缩短,在试验的温度范围内,卵、幼虫、蛹的历期变化分别为7.6~2.0天,12.7~2.9天,34.3~6.8天;成虫寿命变化为17.3~6.5天。卵、幼虫、蛹的发育起点温度分别为7.5℃,9.8℃,11.5℃,10.9℃,有效积温为3.9,52.7,128.5,229.9日度。在五种温度下,卵的存活率均在84.2%以上。幼虫除在15℃时存活率为66.7%外,其它温度均在94.6%以上,蛹的存活率变化幅度最大,25℃时为80.3%,35℃时仅为10.0%。30℃时种群的内禀增长力rm最大,加倍时间最短,净生殖率最高。在20~35℃四种温度下种群的稳定年龄组配中未成熟阶段所占比例均在97%以上。  相似文献   

9.
We investigated the effects often constant temperatures (20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, 39.0, and 41.0 degrees C) on the development, survival, and reproduction of the psocid Liposcelis yunnaniensis Li & Li (Psocoptera: Liposcelididae). At 39.0 and 41.0 degrees C, none of individuals could develop successfully or reproduce. From 20 to 37.5 degrees C, the development period from egg to adult ranged from 64.3 d at 20 degrees C to 16.1 d at 35 degrees C. The lower developmental threshold for egg, nymph, and combined immature stages were estimated at 15.08, 15.13, and 14.77 degrees C, respectively. After emergence the females went through a preoviposition period that ranged from 18.5 d at 22.5 degrees C to 3.11 d at 35 degrees C, whereas it was 16.3 d at 20 degrees C. Liposcelis yunnaniensis produced most eggs at 35 degrees C and the fewest at 22.5 degrees C. The population reared at 35 degrees C had the highest intrinsic rate of increase, shorter mean generation time, and shortest population doubling time compared with other temperatures. According to Weibull frequency distribution, L. yunnaniensis reared at all the temperatures had type III survivorship curves (c < 1.0). Based on life-table parameter estimations, we suggest that optimum range of temperatures for this species is from 25 to 37.5 degrees C. These data give us useful information on population biology of L. yunnaniensis and can be used to better manage this species.  相似文献   

10.
Fruit flies (Diptera: Tephritidae) are the most damaging pests on fruit crops on Réunion Island, near Madagascar. Survival and development of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), the Natal fruit fly, C. rosa Karsch and the Mascarenes fruit fly, C. catoirii Guérin-Mèneville were compared at five constant temperatures spanning 15 to 35 degrees C. Durations of the immature stages of C. capitata, C. rosa and C. catoirii ranged from 14.5-63.8, 18.8-65.7 and 16.8-65.8 days, respectively, at 30-15 degrees C. The lower developmental threshold and thermal constant were calculated using the temperature summation model. The thermal constant for total development of the immature stages of C. capitata, C. rosa and C. catoirii were 260, 405 and 356 DD, respectively. Species differed mainly during the larval stages and ovarian maturation period, with smaller differences in the egg stage. Ceratitis rosa appeared to be better adapted to low temperatures than the two other species as it showed a lower larval developmental threshold of 3.1 degrees C compared to 10.2 degrees C for C. capitata and 8.9 degrees C for C. catoirii. Overall, C. catoirii had a low survival rate within the range of temperatures studied. The different responses of the three Ceratitis species to various temperatures explain to some extent their distribution on the island. The results obtained will be used for optimizing laboratory rearing procedures and for constructing computer simulation models to predict fruit fly population dynamics.  相似文献   

11.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

12.
温度对白蜡吉丁柄腹茧蜂发育和繁殖的影响   总被引:1,自引:0,他引:1  
田军  王小艺  杨忠岐  马玲  郎瑾  曾繁喜  何国萍 《昆虫学报》2009,52(11):1223-1228
为了提高白蜡窄吉丁Agrilus planipennis的重要天敌——白蜡吉丁柄腹茧蜂Spathius agrili Yang的繁育效率, 本研究调查了不同温度(22, 24, 26, 28, 30和32℃)对该蜂生长发育及繁殖的影响。结果表明, 在22~32℃范围内, 白蜡吉丁柄腹茧蜂的卵、茧蛹及世代发育速率均随着温度的升高而加快, 而幼虫的发育速率在26℃时最快. 卵、幼虫、茧蛹和世代的发育起点温度分别为14.34, 16.89, 14.16和13.84℃, 有效积温分别为24.59, 61.16, 166.27和276.80日·度。温度对白蜡吉丁柄腹茧蜂的寄生率、寄生成功率、产卵量、子代蜂数量和性比都有不同程度的影响。据此提出适于人工繁育白蜡吉丁柄腹茧蜂的温度范围为26~28℃。  相似文献   

13.
Development times of the forensically significant parasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) from oviposition to pupation, and from oviposition to adult emergence, were studied in the laboratory at temperatures of 15-35 degrees C using host pupae of the blowfly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Total developmental time of N. vitripennis from oviposition to adult emergence (mean+/-SD) was 43.5+/-2.4, 22.5+/-1.1, 14.8+/-1.7 and 11.3+/-0.9 days when reared at 15, 20, 25 and 30 degrees C, respectively. At 35 degrees C, N. vitripennis did not develop successfully. The rate of total immature development (1/days) increased with temperature. From linear regression of development rates, it was determined that the minimum threshold (tL) for total immature development was 9.8 degrees C (approximately 10 degrees C). Above this threshold, the overall thermal constant (K) for N. vitripennis was found to be 224.3+/-1.7 degree-days.  相似文献   

14.
15.
在 1 6~ 3 1℃范围内设置了 6个温度对麝凤蝶ByasaalcinousKlug卵、幼虫、蛹的发育速率进行了测定。结果表明 ,卵、幼虫、蛹在 1 6~ 3 1℃范围内均能正常生长发育 ,尤以 2 5~ 2 8℃条件下最适宜于该蝶的生长发育 ,发育速率与温度呈直线关系。用直线回归法得到卵、幼虫、蛹的发育起点温度分别为 9 3 ,7 1 ,6 8℃ ,有效积温分别为 90 2 ,3 87 4,2 2 7 9日·度。  相似文献   

16.
Global warming may affect the future pattern of many arthropod-borne diseases, yet the relationship between temperature and development has been poorly described for many key vectors. Here the development of the aquatic stages of Africa's principal malaria vector, Anopheles gambiae s.s. Giles, is described at different temperatures. Development time from egg to adult was measured under laboratory conditions at constant temperatures between 10 and 40 degrees C. Rate of development from one immature stage to the next increased at higher temperatures to a peak around 28 degrees C and then declined. Adult development rate was greatest between 28 and 32 degrees C, although adult emergence was highest between 22 and 26 degrees C. No adults emerged below 18 degrees C or above 34 degrees C. Non-linear models were used to describe the relationship between developmental rate and temperature, which could be used for developing process-based models of malaria transmission. The utility of these findings is demonstrated by showing that a map where the climate is suitable for the development of aquatic stages of A. gambiae s.s. corresponded closely with the best map of malaria risk currently available for Africa.  相似文献   

17.
L. Boye Jensen 《BioControl》1990,35(2):277-281
The effects of temperature on survival and development of immature stages ofBembidion lampros were examined under controlled conditions in the laboratory. The duration of development was examined at 5°C, 12°C, 17°C, 19°C, 22°C, 25°C, 30°C and 32°C and found to be inversely related to temperature. Between 12°C and 30°C there was a significant difference in duration of egg development, but no significant difference in percentage of eggs hatched. The upper and lower lethal limits for egg development were estimated (c 31°C and 4°C respectively). There are 3 larval instars and one pupal stage. Development of larva plus pupa required a minimum of 20.9 days at 30°C. Between 22°C and 30°C survival from larva to the adult stage was 80%.   相似文献   

18.
温度对桃蛀螟生长发育和繁殖的影响   总被引:7,自引:0,他引:7  
为了明确温度对桃蛀螟Conogethes punctiferalis (Guenée)生长发育和繁殖的影响, 本实验在恒温条件(15, 19, 23, 27和31℃共5个温度梯度)下, 以板栗为寄主食料, 研究了温度对桃蛀螟实验种群生长发育和繁殖的影响。结果表明: 温度对桃蛀螟各虫态的发育历期、 存活率、 蛹重以及种群繁殖力有显著影响。在15~27℃范围内, 各虫态的发育历期均随温度的升高而缩短, 发育速率与温度呈显著正相关。但是, 当温度上升至31℃时, 幼虫生长发育受到抑制, 其发育历期比27℃时延长了1.11 d, 而卵期、 蛹期和产卵前期仍符合随温度升高趋于缩短的趋势。此外, 15℃下桃蛀螟5龄幼虫发育停滞, 表明老熟幼虫的发育起点温度高于其他低龄幼虫。桃蛀螟世代存活率随环境温度变化的大小顺序为23℃>27℃>19℃>31℃, 其中, 23~27℃的存活率较高, 为54.44%~63.56%, 31℃时为4.30%, 说明温度过高或过低均不利于其生长发育。成虫产卵量在23℃时最高, 单雌平均产卵量达55.00粒, 其次为19℃和27℃, 单雌平均产卵量分别为43.30和39.70粒; 31℃下产卵量最少, 仅为20.90粒。由直接最优法计算得到桃蛀螟卵期、 幼虫期、 蛹期、 产卵前期及全世代的发育起点温度分别为10.37, 10.06, 14.27, 7.47和11.85℃, 有效积温依次为70.84, 287.71, 118.42, 58.33和509.06日度。研究结果为桃蛀螟发生期的预测预报提供了基础参考数据, 对指导生产实践有实际的应用意义。  相似文献   

19.
温度对产虫茶昆虫紫斑谷螟生长发育的影响   总被引:1,自引:0,他引:1  
为探明温度对贵州主要产虫茶昆虫紫斑谷螟Pyralis farinalis (Linnaeus)生长发育的影响, 本研究以白茶Litsea coreana为寄主植物, 分别设置5个恒温(19, 22, 25, 28和31℃)条件, 研究温度对紫斑谷螟卵、 幼虫、 蛹和未成熟期平均发育历期、 发育速率和存活率的影响, 计算各虫态发育起点温度和有效积温。 结果表明: 温度对紫斑谷螟各虫态发育历期、 发育速率和存活率影响显著。 在19 ~ 31℃范围内, 各虫态的平均发育历期均随温度的升高而缩短, 卵期、 幼虫期、 蛹期及未成熟期均在31℃达到最小值, 分别为4.56±0.24, 43.33±1.50, 7.89±0.20和55.78±1.69 d。 紫斑谷螟各虫态发育速率与温度呈二次回归关系, 且极显著相关。 此外, 温度显著影响各虫态存活率, 卵的存活率在28℃时最高, 为93%; 幼虫和蛹的存活率则在25℃最高, 分别为88%和93%; 温度过高或过低均不利于其生长发育。 由直接最优法计算得到紫斑谷螟卵期、 幼虫期、 蛹期及未成熟期的发育起点温度分别为13.30, 15.48, 13.19和14.82℃, 有效积温依次为88.36, 679.51, 159.73和952.04日·度。 这些结果为紫斑谷螟的繁殖提供了基础参考数据, 对指导虫茶生产有实用参考价值。  相似文献   

20.
The development, survival, and reproduction of the black citrus aphid Toxoptera aurantii (Boyer de Fonscolombe) were evaluated at ten constant temperatures (4, 7, 10, 15, 20, 25, 28, 30, 32 and 35 degrees C). Development was limited at 4 and 35 degrees C. Between 7 and 32 degrees C, developmental periods of immature stages varied from 44.2 days at 7 degrees C to 5.3 days at 28 degrees C. Overall immature development required 129.9 degree-days above 3.8 degrees C. The upper temperature thresholds of 32.3, 28.6, 29.3, 27.2, and 28.6 degrees C were determined from a non-linear biophysical model for the development of instars 1-4 and overall immature stages, respectively. Immature survivorship varied from 82.1 to 97.7% within the temperature range of 10-30 degrees C. However, immature survivorship was reduced to 26.3% at 7 degrees C and 33.1% at 32 degrees C. Mean adult longevity was the longest (44.2 days) at 15 degrees C and the shortest (6.2 days) at 32 degrees C. The predicted upper temperature limit for adult survivorship was at 32.3 degrees C. Total nymph production increased from 16.3 nymphs per female at 10 degrees C to 58.7 nymphs per female at 20 degrees C, declining to 6.1 nymphs per female at 32 degrees C. The estimation of lower and upper temperature limits for reproduction was at 8.2 and 32.5 degrees C, respectively. The population reared at 28 degrees C had the highest intrinsic rate of increase (0.394), the shortest population doubling time (1.8 days), and shortest mean generation time (9.5 days) compared with the populations reared at six other temperatures. The population reared at 20 degrees C had the highest net reproductive rate (54.6). The theoretical lower and upper temperature limits for population development, survival and reproduction were estimated at 9.4 and 30.4 degrees C, respectively. The biology of T. aurantii was also compared with three other citrus aphid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号