首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous data suggest that in a peak-interval procedure with gaps, memory for the pre-gap interval varies with the discriminability of the gap from the to-be-timed signal. Here we extend this finding by manipulating the pre-gap and gap intervals as well as the visual contrast between the gap and the to-be-timed signal. The delay in response function after the gap was found to vary with the duration and position of the gap. However, for each gap duration and position, the delay in response increased with the gap-signal contrast: at 60% gap-signal contrast pigeons continued to accumulate time during the gap, at 80% gap-signal contrast pigeons stopped timing during the gap, and at 100% gap-signal contrast pigeons reset their timing after the gap. Data are accounted for by a time-sharing model assuming two concurrent processes during the gap--time accumulation and memory decay controlled by the salience of the gap--whose interplay results in a continuum of responses in the gap procedure.  相似文献   

2.
M Spronk  EK Vogel  LM Jonkman 《PloS one》2012,7(8):e42262
The present study investigated the development of visuospatial working memory (VSWM) capacity and the efficiency of filtering in VSWM in adolescence. To this end, a group of IQ-matched adults and adolescents performed a VSWM change detection task with manipulations of WM-load and distraction, while performance and electrophysiological contralateral delay activity (CDA) were measured. The CDA is a lateralized ERP marker of the number of targets and distracters that are selectively encoded/maintained in WM from one hemifield of the memory display. Significantly lower VSWM-capacity (Cowan's K) was found in adolescents than adults, and adolescents' WM performance (in terms of accuracy and speed) also suffered more from the presence of distracters. Distracter-related CDA responses were partly indicative of higher distracter encoding/maintenance in WM in adolescents and were positively correlated with performance measures of distracter interference. This correlation suggests that the higher interference of distracters on WM performance in adolescents was caused by an inability to block distracters from processing and maintenance in WM. The lower visuospatial WM-capacity (K) in adolescents in the high load (3 items) condition was accompanied by a trend (p<.10) towards higher CDA amplitudes in adolescents than adults, whereas CDA amplitudes in the low load (1 item) condition were comparable between adolescents and adults. These findings point to immaturity of frontal-parietal WM-attention networks that support visuospatial WM processing in adolescence.  相似文献   

3.
To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.  相似文献   

4.
We measured reaction times (RTs) for identification of a target among distracters under stabilized image conditions in which the positions of the target and the distracters were constant within a single experimental session. Under these conditions, the observer need not search for the target because its position is known. We nevertheless found that the presence of even a single distracter could elevate RTs. The magnitude of this effect depended on the distance of the distracter from the target and, for some observers, the distance of the distracter from the fovea. When we added not one but six background elements in a ring around the target, RT increased even more. If, apart from these neighboring distracters, the target was surrounded by more distracters located beyond the nearest neighbors, RT was, in general, not increased further. These findings suggest that adding background elements in a search task can elevate RTs in ways that are not dependent on the positional uncertainty of the target.  相似文献   

5.
Visual attention has been classically described as a spotlight that enhances the processing of a behaviorally relevant object. However, in many situations, humans and animals must simultaneously attend to several relevant objects separated by distracters. To account for this ability, various models of attention have been proposed including splitting of the attentional spotlight into multiple foci, zooming of the spotlight over a region of space, and switching of the spotlight among objects. We investigated this controversial issue by recording neuronal activity in visual area MT of two macaques while they attended to two translating objects that circumvented a third distracter object located inside the neurons' receptive field. We found that when the attended objects passed through or nearby the receptive field, neuronal responses to the distracter were either decreased or remained unaltered. These results demonstrate that attention can split into multiple spotlights corresponding to relevant objects while filtering out interspersed distracters.  相似文献   

6.
This work reports an empirical examination of two key issues in theoretical neuroscience: distractibility in the context of working memory (WM) and its reward dependence. While these issues have been examined fruitfully in isolation (e.g. Macoveanu et al. in Biol Cybern 96(4): 407–19, 2007), we address them here in tandem, with a focus on how distractibility and reward interact. In particular, we parameterise an observation model that embodies the nonlinear form of such interactions, as described in a recent neuronal network model (Gruber et al. in J Comput Neurosci 20:153–166, 2006). We observe that memory for a target stimulus can be corrupted by distracters in the delay period. Interestingly, in contrast to our theoretical predictions, this corruption was only partial. Distracters do not simply overwrite target; rather, a compromise is reached between target and distracter. Finally, we observed a trend towards a reduced distractibility under conditions of high reward. We discuss the implications of these findings for theoretical formulations of basal and dopamine (DA)-modulated neural bump- attractor networks of working memory.  相似文献   

7.

Background

Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception.

Methodology and Principal Findings

Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials), tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory), reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands.

Conclusion and Significance

Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal priorities during achievement of cognitive activities and to keep pain-related information out of task settings.  相似文献   

8.
《Anthrozo?s》2013,26(3):289-300
ABSTRACT

The purpose of this study was to determine whether the presence of a dog would have an impact on object recognition memory performance of preschool children. This work represents an extension of previous research which found that preschoolers require fewer instructional prompts to complete this type of memory task when in the presence of a dog. If children require fewer instructional prompts it is possible that they are better able to focus on the task itself and as a result, improved memory performance is likely. Because the earlier experiment utilized a very simple version of the task that was readily completed by the preschool children, the overall performance data were at ceiling. The current study, involving 20 preschool children, included a manipulation of task difficulty through varying the number of distracters (one versus four) present at test. Increasing the number of distractors in a simple recognition task is known to make that task more challenging, and thus performance was expected to be slower and less accurate in the four distracter conditions relative to the one-distracter conditions. The collaborators in the study were either a therapy dog or a human. A two-way repeated measures design was used such that each child served as his/her own control and was tested in each of four separate conditions: dog present (one and four distracters) and human present (one and four distracters). The results showed that the preschool children performed the object recognition task faster and more accurately in the presence of the therapy dog relative to a human and also in the one-distracter versus four-distracter condition. The authors conclude that these effects result from increased focus and/or motivation resulting from the presence of the dog.  相似文献   

9.
The current study investigated whether women show an attentional bias toward courtship language during the fertile phase of their menstrual cycle. Thirty heterosexual women (17 naturally cycling, 13 using hormonal contraceptives) completed a dichotic listening task on both a high and low fertility day of their menstrual cycle. Participants were asked to verbally repeat (shadow) an emotionally neutral target passage played in one ear while either a neutral or courtship distracter was played in the other ear. Courtship distracters were flirtatious in content but not overtly sexual. Shadowing errors were coded as a measure of attentional bias toward the distracter. Saliva samples were taken to determine whether levels of estradiol, progesterone and/or testosterone correlated with task performance. As predicted, naturally cycling women made more shadowing errors when listening to a courtship distracter during the fertile phase of their cycle than during the nonfertile phase. This effect was moderated by relationship status, such that fertile, mated women showed an attentional bias for courtship language but fertile single women did not. However, because of small sample sizes in the analysis, this relationship should be viewed as preliminary. Hormonal analysis revealed that higher levels of salivary estradiol predicted greater attentional bias toward courtship language in naturally cycling women. These results suggest that women's attention is drawn to verbal courtship signals when they are fertile, and that this shift is linked to increased estradiol release during the periovulatory phase.  相似文献   

10.
Neurons in the primate dorsolateral prefrontal cortex (dlPFC) filter attended [corrected] targets distinctly from distracters through their response rates. The extent to which this ability correlates with the organism's performance, and the neural processes underlying it, remain unclear. We trained monkeys to attend to a visual target that differed in rank along a color-ordinal scale from that of a distracter. The animals' performance at focusing attention on the target and filtering out the distracter improved as ordinal distance between the stimuli increased. Importantly, dlPFC neurons also improved their filtering performance with increasing ordinal target-distracter distance; they built up their response rate in anticipation of the target-distracter onset, and then units encoding target representations increased their firing rate by similar amounts, whereas units encoding distracter representations gradually suppressed their rates as the interstimulus ordinal distance increased. These results suggest that attentional-filtering performance in primates relies upon dlPFC neurons' ability to suppress distracter representations.  相似文献   

11.
A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.  相似文献   

12.
Blood oxygen level-dependent (BOLD) responses were measured in parts of primary visual cortex that represented unstimulated visual field regions at different distances from a stimulated central target location. The composition of the visual scene varied by the presence or absence of additional peripheral distracter stimuli. Bottom-up effects were assessed by comparing peripheral activity during central stimulation vs. no stimulation. Top-down effects were assessed by comparing active vs. passive conditions. In passive conditions subjects simply watched the central letter stimuli and in active conditions they had to report occurrence of pre-defined targets in a rapid serial letter stream. Onset of the central letter stream enhanced activity in V1 representations of the stimulated region. Within representations of the periphery activation decreased and finally turned into deactivation with increasing distance from the stimulated location. This pattern was most pronounced in the active conditions and during the presence of peripheral stimuli. Active search for a target did not lead to additional enhancement at areas representing the attentional focus but to a stronger deactivation in the vicinity. Suppressed neuronal activity was also found in the non distracter condition suggesting a top-down attention driven effect. Our observations suggest that BOLD signal decreases in primary visual cortex are modulated by bottom-up sensory-driven factors such as the presence of distracters in the visual field as well as by top-down attentional processes.  相似文献   

13.
In this paper, in view of the senescence of plant and the decay of wrack, time delays are introduced into the plant-wrack model. The effects of wrack decay and time delay on the dynamical behaviors of the diffusive plant-wrack model are studied analytically and numerically. When the delay is zero, the wrack decay will induce the change of stability of the unique equilibrium point, further lead to the occurrence of the Hopf bifurcation and the Turing instability. When the delay is present, the conditions for the occurrence of the Hopf bifurcation are established. By comparing the results of the model without and with delay, it is found that the increases of delay may induce no stability switches, a single stability switch or multiple stability switches, when the value of wrack decay can stabilize model with zero delay. When the value of wrack decay can destabilize model with zero delay, numerical simulations show that the small delay may cause homogeneous distributions of vegetation, while the larger delay may cause the emergence of periodic oscillation of vegetation. The obtained results provide a basis for understanding the spatiotemporal evolution of such a plant-wrack model with delay.  相似文献   

14.
We investigated the effects of spatial and temporal factors on manual localization of a visual target by measuring accuracy, precision, and bias. Spatial factors included manipulation of display as with or without distracters, with invariant or variant distracters, and with near or far distracters, respectively, in Experiments 1, 2, and 3. The target and distracters were of 1degrees dots differing only by luminance parameter; they were presented concurrently for 150 or 1000 ms while observers had to memorize the target location maintaining a fixed gaze. The observers' task was to reproduce the location of the target with a mouse cursor available 150 ms following stimuli offset. Results from all experiments showed that localization performance for a briefly exposed target was as accurate and precise as that for a long exposed target. Moreover, manipulation of spatial factors had no systematic effects on accuracy and precision except that near distracters yielded higher precision. Interestingly, localization performance was unbiased in 150 ms condition when there were distracters in the display, while being biased towards the fovea in 1000 ms condition regardless of their presence or absence. These results suggest a temporal dynamics in dominance-suppression between egocentric and exocentric cues in the construction of memory for location.  相似文献   

15.
In visual search tasks with a near-threshold target amongst distracters, log detection thresholds rise in proportion to the log of the number of stimuli. Previous research has shown a very steep slope for this set-size effect where the target is a change in spatial frequency (SF) across an ISI, suggesting a low-level explanation for 'change blindness (Wright et al., 2000). Here, we analyse stimulus and task variables in order to determine the contributions of stimulus detection and attention processes. Stimuli consisted of two 150 ms frames each containing 1 to 4 Gabor targets, with an ISI of 250 ms. In a 2AFC detection task with uniform distracters, slopes of 0.23-0.52 were found, in line with visual search results. 2AFC SF discrimination tasks gave slopes of 0.68, 0.69 with homogeneous distracters and 0.76-0.96 with inhomogeneous distracters, consistent with averaging of stimuli within a frame. If the distracters were also made to change across ISI, averaging was impossible, and focal attention was required to solve the discrimination. This always gave set-size slopes > 1. It is concluded that, under conditions where a stimulus array can be analysed globally, change detection performance is limited by signal detection mechanisms, rather than limited capacity attention or memory mechanisms. However, where this is prevented, for example by changing more than one item, limitations due to attention or memory produce an even steeper set-size effect.  相似文献   

16.
The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location), and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape) can be flexibly added to object representations.  相似文献   

17.
Event-related Potential Study of Novelty Processing Abnormalities in Autism   总被引:1,自引:0,他引:1  
To better understand visual processing abnormalities in autism we studied the attention orienting related frontal event potentials (ERP) and the sustained attention related centro-parietal ERPs in a three stimulus oddball experiment. The three stimulus oddball paradigm was aimed to test the hypothesis that individuals with autism abnormally orient their attention to novel distracters as compared to controls. A dense-array 128 channel EGI electroencephalographic (EEG) system was used on 11 high-functioning children and young adults with autism spectrum disorder (ASD) and 11 age-matched, typically developing control subjects. Patients with ASD showed slower reaction times but did not differ in response accuracy. At the anterior (frontal) topography the ASD group showed significantly higher amplitudes and longer latencies of early ERP components (e.g., P100, N100) to novel distracter stimuli in both hemispheres. The ASD group also showed prolonged latencies of late ERP components (e.g., P2a, N200, P3a) to novel distracter stimuli in both hemispheres. However, differences were more profound in the right hemisphere for both early and late ERP components. Our results indicate augmented and prolonged early frontal potentials and a delayed P3a component to novel stimuli, which suggest low selectivity in pre-processing and later-stage under-activation of integrative regions in the prefrontal cortices. Also, at the posterior (centro-parietal) topography the ASD group showed significantly prolonged N100 latencies and reduced amplitudes of the N2b component to target stimuli. In addition, the latency of the P3b component was prolonged to novel distracters in the ASD group. In general, the autistic group showed prolonged latencies to novel stimuli especially in the right hemisphere. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. We propose the potential application of ERP evaluations in a novelty task as outcome measurements in the biobehavioral treatment (e.g., EEG biofeedback, TMS) of autism.  相似文献   

18.
The congruency effect in distracter interference (e.g., Stroop) tasks is often reduced after incongruent trials, relative to congruent trials. It has been proposed that this congruency sequence effect (CSE) results from trial-by-trial adjustments of attention, which are triggered by changes in response conflict, expectancy, or negative affect. Hence, a large literature has developed to investigate the source(s) of attention adaptation in distracter interference tasks. Recent work, however, suggests that CSEs may stem from feature integration and/or contingency learning processes that are confounded with congruency sequence in the vast majority of distracter interference tasks. By combining an established method for measuring CSEs in the absence of these learning and memory confounds with a prime-probe task, we observed robust CSEs in two experiments. These findings provide strong evidence of CSEs independent of learning and memory confounds, which might be explainable by trial-by-trial adjustments of attention. They also reveal a highly effective approach for observing CSEs independent of the typical confounds, which will facilitate future studies of how people adapt to distraction.  相似文献   

19.
Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the tasks memory period, 3) rates that accelerate throughout the delay, and 4) patterns of inhibited firing (below baseline) analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.  相似文献   

20.
《Mathematical biosciences》1987,85(2):153-183
We consider a predator-prey system where the prey can diffuse between one patch with a low level of food and without predation and one patch with a higher level of food but with predation. We assume a Volterra within-patch dynamics, and we assume further that the benefit for the predator comes also from predation in the past through an exponential-delay memory function. By homotopy techniques we prove that, if the prey diffusion is weak enough, then a nonzero globally stable equilibrium exists. This result essentially depends upon the self-regulating coefficient of the predator. If we put this coefficient equal to zero, assuming that the predator density is regulated only by predation, then we can prove the existence of a Hopf bifurcating orbit from the positive equilibrium. The main cause of periodic orbits is the time delay in the predator response functional. We prove that diffusion, lack of delay in the predator response, and increase in the rate of the exponential decay of the memory play stabilizing roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号