首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
O-GLYCBASE is a comprehensive database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the SWISS-PROT and PIR databases as well as directly from recently published reports. Nineteen percent of the entries extracted from the databases needed revision with respect to O-linked glycosylation. Entries include information about species, sequence, glycosylation site and glycan type, and are fully referenced. Sequence logos displaying the acceptor specificity for the GaINAc transferase are shown. A neural network method for prediction of mucin type O-glycosylation sites in mammalian glycoproteins exclusively from the primary sequence is made available by E-mail or WWW. The O-GLYCBASE database is also available electronically through our WWW server or by anonymous FTP.  相似文献   

2.
O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include information about species, sequence, glycosylation sites and glycan type and is fully cross-referenced. Compared to version 2.0 the number of entries has increased by 20%. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu. dk/databases/OGLYCBASE/  相似文献   

3.
O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been compiled from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, a literature reference and http-linked cross-references to other databases. Version 4.0 contains 179 protein entries, an approximate 15% increase over the last version. Sequence logos representing the acceptor specificity patterns for GalNAc, GlcNAc, mannosyl and xylosyl transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu.dk/databases/OGLYCBASE/  相似文献   

4.
PhosphoBase: a database of phosphorylation sites.   总被引:2,自引:0,他引:2       下载免费PDF全文
PhosphoBase is a database of experimentally verified phosphorylation sites. Version 1.0 contains 156 entries and 398 experimentally determined phosphorylation sites. Entries are compiled and revised from the literature and from major protein sequence databases such as SwissProt and PIR. The entries provide information about the phosphoprotein and the exact position of its phosphorylation sites. Furthermore, part of the entries contain information about kinetic data obtained from enzyme assays on specific peptides. To illustrate the use of data extracted from PhosphoBase we present a sequence logo displaying the overall conservation of positions around serines phosphorylated by protein kinase A (PKA). PhosphoBase is available on the WWW at http://www.cbs.dtu.dk/databases/PhosphoBase/  相似文献   

5.
A strategy has been developed for the construction of a validated, comprehensive composite protein sequence database. Entries are amalgamated from primary source data bases by a largely automated set of processes in which redundant and trivially different entries are eliminated. A modular approach has been adopted to allow scientific judgement to be used at each stage of database processing and amalgamation. Source databases are assigned a priority depending on the quality of sequence validation and commenting. Rejection of entries from the lower priority database, in each pairwise comparison of databases, is carried out according to optionally defined redundancy criteria based on sequence segment mismatches. Efficient algorithms for this methodology are embodied in the COMPO software system. COMPO has been applied for over 2 years in construction and regular updating of the OWL composite protein sequence database from the source databases NBRF-PIR, SWISS-PROT, a GenBank translation retrieved from the feature tables, NBRF-NEW, NEWAT86, PSD-KYOTO and the sequences contained in the Brookhaven protein structure databank. OWL is part of the ISIS integrated data resource of protein sequence and structure [Akrigg et al. (1988) Nature, 335, 745-746]. The modular nature of the integration process greatly facilitates the frequent updating of OWL following releases of the source databases. The extent of redundancy in these sources is revealed by the comparison process. The advantages of a robust composite database for sequence similarity searching and information retrieval are discussed.  相似文献   

6.
SWISS-PROT, a curated protein sequence data bank, contains not only sequence data but also annotation relevant to a particular sequence. The annotation added to each entry is done by a team of biologists and comes, primarily, from articles in journals reporting the actual sequencing and sometimes characterisation. Review articles and collaboration with external experts also play a role along with the use of secondary databases like PROSITE and Pfam in addition to a variety of feature prediction methods. Annotation added by these methods is checked for relevance and likelihood to a particular sequence. The onset of genome sequencing has led to a dramatic increase in sequence data to be included in SWISS-PROT. This has led to the production of TrEMBL (Translation of the EMBL database). TrEMBL consists of entries in a SWISS-PROT format that are derived from the translation of all coding sequences in the EMBL nucleotide sequence database, that are not in SWISS-PROT. Unlike SWISS-PROT entries those in TrEMBL are awaiting manual annotation. However, rather than just representing basic sequence and source information, steps have been taken to add features and annotation automatically. In taking these steps it is hoped that TrEMBL entries are enhanced with some indication as to what a protein is, could or may be.  相似文献   

7.
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The family of DNA-binding proteins is one of the most populated and studied amongst the various genomes of bacteria, archaea and eukaryotes and the Web-based system presented here is an approach to their classification. The DnaProt resource is an annotated and searchable collection of protein sequences for the families of DNA-binding proteins. The database contains 3238 full-length sequences (retrieved from the SWISS-PROT database, release 38) that include, at least, a DNA-binding domain. Sequence entries are organized into families defined by PROSITE patterns, PRINTS motifs and de novo excised signatures. Combining global similarities and functional motifs into a single classification scheme, DNA-binding proteins are classified into 33 unique classes, which helps to reveal comprehensive family relationships. To maximize family information retrieval, DnaProt contains a collection of multiple alignments for each DNA-binding family while the recognized motifs can be used as diagnostically functional fingerprints. All available structural class representatives have been referenced. The resource was developed as a Web-based management system for online free access of customized data sets. Entries are fully hyperlinked to facilitate easy retrieval of the original records from the source databases while functional and phylogenetic annotation will be applied to newly sequenced genomes. The database is freely available for online search of a library containing specific patterns of the identified DNA-binding protein classes and retrieval of individual entries from our WWW server (http://kronos.biol.uoa.gr/~mariak/dbDNA.html).  相似文献   

8.
9.
10.
The SWISS-PROT protein sequence data bank: current status.   总被引:12,自引:1,他引:11       下载免费PDF全文
SWISS-PROT is an annotated protein sequence database established in 1986 and maintained collaboratively, since 1988, by the Department of Medical Biochemistry of the University of Geneva and the EMBL Data Library. The SWISS-PROT protein sequence data bank consist of sequence entries. Sequence entries are composed of different lines types, each with their own format. For standardization purposes the format of SWISS-PROT follows as closely as possible that of the EMBL Nucleotide Sequence Database. A sample SWISS-PROT entry is shown in Figure 1.  相似文献   

11.
12.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

13.
ProClass is a protein family database that organizes non-redundant sequence entries into families defined collectively by PIR superfamilies and PROSITE patterns. By combining global similarities and functional motifs into a single classification scheme, ProClass helps to reveal domain and family relationships and classify multi-domain proteins. The database currently consists of >155 000 sequence entries retrieved from both PIR-International and SWISS-PROT databases. Approximately 92 000 or 60% of the ProClass entries are classified into approximately 6000 families, including a large number of new members detected by our GeneFIND family identification system. The ProClass motif collection contains approximately 72 000 motif sequences and >1300 multiple alignments for all PROSITE patterns, including >21 000 matches not listed in PROSITE and mostly detected from unique PIR sequences. To maximize family information retrieval, the database provides links to various protein family, domain, alignment and structural class databases. With its high classification rate and comprehensive family relationships, ProClass can be used to support full-scale genomic annotation. The database, now being implemented in an object-relational database management system, is available for online sequence search and record retrieval from our WWW server at http://pir.georgetown.edu/gfserver/proclass.html  相似文献   

14.
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.  相似文献   

15.
SWISS-2DPAGE is a database of proteins identified on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The current release contains 343 entries of human, yeast (Saccharomyces cerevisiae) and Escherichia coli origin, as well as virtual entries for each of the protein sequences in the SWISS-PROT database.  相似文献   

16.
InterPro was developed as a new integrated documentation resource for protein families, domains and functional sites to rationalize the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects and has applications in computational functional classification of newly determined sequences lacking biochemical characterization and in comparative genome analysis. InterPro contains over 3500 entries, with more than 1000000 hits in SWISS-PROT and TrEMBL. The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for whole proteome analysis of the pathogenic microorganism, Mycobacterium tuberculosis, and comparison with the predicted protein coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. 64.8% of the M. tuberculosis proteins in the proteome matched InterPro entries, and these could be classified according to function. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains, and the most highly represented families in each organism. InterPro thus provides a useful tool for global views of whole proteomes and their compositions.  相似文献   

17.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003   总被引:56,自引:4,他引:52  
The SWISS-PROT protein knowledgebase (http://www.expasy.org/sprot/ and http://www.ebi.ac.uk/swissprot/) connects amino acid sequences with the current knowledge in the Life Sciences. Each protein entry provides an interdisciplinary overview of relevant information by bringing together experimental results, computed features and sometimes even contradictory conclusions. Detailed expertise that goes beyond the scope of SWISS-PROT is made available via direct links to specialised databases. SWISS-PROT provides annotated entries for all species, but concentrates on the annotation of entries from human (the HPI project) and other model organisms to ensure the presence of high quality annotation for representative members of all protein families. Part of the annotation can be transferred to other family members, as is already done for microbes by the High-quality Automated and Manual Annotation of microbial Proteomes (HAMAP) project. Protein families and groups of proteins are regularly reviewed to keep up with current scientific findings. Complementarily, TrEMBL strives to comprise all protein sequences that are not yet represented in SWISS-PROT, by incorporating a perpetually increasing level of mostly automated annotation. Researchers are welcome to contribute their knowledge to the scientific community by submitting relevant findings to SWISS-PROT at swiss-prot@expasy.org.  相似文献   

18.
EpoDB is a database of genes expressed in vertebrate red blood cells. It is also a prototype for the creation of cell and tissue-specific databases from multiple external sources. The information in EpoDB obtained from GenBank, SWISS-PROT, Transfac, TRRD and GERD is curated to provide high quality data for sequence analysis aimed at understanding gene regulation during erythropoiesis. New protocols have been developed for data integration and updating entries. Using a BLAST-based algorithm, we have grouped GenBank entries representing the same gene together. This sequence similarity protocol was also used to identify new entries to be included in EpoDB. We have recently implemented our database in Sybase (relational tables) in addition to SICStus Prolog to provide us with greater flexibility in asking complex queries that utilize information from multiple sources. New additions to the public web site (http://www.cbil.upenn.edu/epodb) for accessing EpoDB are the ability to retrieve groups of entries representing different variants of the same gene and to retrieve gene expression data. The BLAST query has been enhanced by incorporating BLASTView, an interactive and graphical display of BLAST results. We have also enhanced the queries for retrieving sequence from specified genes by the addition of MEME, a motif discovery tool, to the integrated analysis tools which include CLUSTALW and TESS.  相似文献   

19.
The CluSTr (Clusters of SWISS-PROT and TrEMBL proteins) database offers an automatic classification of SWISS-PROT and TrEMBL proteins into groups of related proteins. The clustering is based on analysis of all pairwise comparisons between protein sequences. Analysis has been carried out for different levels of protein similarity, yielding a hierarchical organisation of clusters. The database provides links to InterPro, which integrates information on protein families, domains and functional sites from PROSITE, PRINTS, Pfam and ProDom. Links to the InterPro graphical interface allow users to see at a glance whether proteins from the cluster share particular functional sites. CluSTr also provides cross-references to HSSP and PDB. The database is available for querying and browsing at http://www.ebi.ac.uk/clustr.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号