首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental and comparative aspects of brine shrimp tubulin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tubulin from embryos of the brine shrimp Artemia has been purified to apparent homogeneity by chromatography on phosphocellulose P11 and DEAE-cellulose, (NH4)2SO4 fractionation and assembly-disassembly of microtubules. Peptide mapping indicated that Artemia and bovine brain tubulin were very similar in spite of differences in the electrophoretic behaviour of tubulin from these two organisms. Isoelectric focusing and two-dimensional gel electrophoresis were used to resolve and identify several Artemia isotubulins . The isotubulin composition and the quantity of tubulin did not change during pre-emergence development of Artemia embryos. Formation of microtubules with tubulin purified from embryos at different stages of development did not require glycerol or microtubule-associated proteins and formation of structurally normal microtubules was actually hindered by glycerol and Mg2+. The characteristics of Artemia tubulin, in concert with the unusual life history of Artemia, suggest that this organism will be very useful for the study of tubulin gene expression and tubulin utilization during embryo development.  相似文献   

2.
Nordihydroguaiaretic acid (NDGA) protected microtubules in NRK cells from depolymerization caused by structurally and functionally diverse drugs such as nocodazole, colchicine, vinblastine, and ilimaquinone. Hitherto reported drugs, although structurally unrelated to paclitaxel, stabilize microtubules in a way similar to that of paclitaxel and compete for paclitaxel binding to tubulin. However, NDGA had activity toward microtubules different from the effects of paclitaxel. In NRK cells, paclitaxel caused microtubule bundle formation in the presence and absence of microtubule-depolymerizing drugs. However, microtubule bundle did not form, and microtubules radiated from the microtubule-organizing center, in cells treated with NDGA. Acceleration of tubulin polymerization in vitro by paclitaxel was strong but that by NDGA was weak. Microtubules polymerized in vitro in the presence of paclitaxel, but not those polymerized in the presence of NDGA, resisted the effects of cold. NDGA seemed to bind to tubulin, but did not compete for [3H]paclitaxel binding to tubulin. These observations indicate that NDGA belongs to a novel family of microtubule-stabilizing drugs.  相似文献   

3.
The mutant BEN210 of Physarum polycephalum is highly resistant to a number of benzimidazole carbamate agents, including methylbenzimidazole-2-yl-carbamate and parbendazole. The resistance is conferred by the benD210 mutation in a structural gene for beta-tubulin. This mutant allele encodes a beta-tubulin with novel electrophoretic mobility. We have used this strain to determine whether the mutant beta-tubulin is used in microtubules and whether this usage permits microtubule polymerisation in the presence of drugs both in vivo and in vitro. In vitro assembly studies of tubulin purified from the mutant strain have shown that microtubules are formed both in the absence of drugs and in all drug concentrations tested (up to 50 microM parbendazole). In contrast, the assembly of microtubules from wild-type tubulin in vitro is totally inhibited by 2-5 microM parbendazole. Thus the resistance of BEN210 to parbendazole observed in vivo has been reproduced in vitro using tubulin purified from the mutant strain. Electrophoretic analysis of the microtubules formed in vitro has shown that both the wild-type and the mutant beta-tubulin are incorporated into the microtubules and that the proportion of mutant to wild-type beta-tubulin appears to remain constant with increasing drug concentration. This is the first demonstration of a single mutation in a tubulin structural gene causing an altered function of the gene product in vitro.  相似文献   

4.
Tertiary amine local anesthetics previously have been shown to influence some microtubule-dependent cellular functions. Since several cell secretion processes, including secretion of collagen, have been shown to be inhibited by microtubule-disrupting drugs such as colchicine, we determined whether local anesthetics affect collagen secretion. Six local anesthetics inhibited collagen and non-collagen protein secretion (up to 98%) into the extracellular medium of 3T3 cells and human fibroblasts, an effect apparently independent of influences on proline transport and total protein synthesis. A combination of colchicine and cytochalasin B did not duplicate the effects of local anesthetics. The effects of subsaturating concentrations of colchicine and procaine on secretion were additive, suggesting that both drugs act on the secretory pathway at the level of microtubules, but other effects of the two types of drugs were strikingly different. In comparing the mechanisms of action of colchicine and local anesthetics, it was seen that, in contrast to colchicine, radioactive procaine and lidocaine were slowly transported into 3T3 cells, did not bind to the tubulin-containing TCA-insoluble fraction, and did not bind to purified tubulin in vitro. The fraction of cellular tubulin present as microtubules (47% in normal cells) was determined by measuring tubulin in stabilized, sedimentable microtubules compared to total tubulin, using a [3H]colchicine binding assay. Pretreatment of cells in the cold or with colchicine led to depolymerization of microtubules, but pretreatment with five local anesthetics tested did not. Therefore, in contrast to colchicine, local anesthetics in concentrations that inhibit secretion do not directly interact with or depolymerize microtubules. These drugs, however, do affect a microtubule-dependent process and may do so by detaching the microtubular system from the cell membrane.  相似文献   

5.
By use of dark-field light microscopy, secretory granules isolated from the anglerfish endocrine pancreas were observed to attach to and release from microtubules assembled in vitro from brain homogenates. Secretory granules only bound to microtubules assembled in the presence of microtubule-associated proteins (MAPs) and not to microtubules assembled from purified tubulin. The addition of a MAP fraction to purified tubulin restored secretory granule binding. The secretory granules were released from MAP-containing microtubules by the addition of Mg-ATP but not by other nucleotides. The number of secretory granules bound to MAP-containing microtubules was increased in the presence of cyclic AMP. In addition to the associations of secretory granules with microtubules, MAP-containing microtubules also associated with each other. These laterally associated microtubules were dispersed by the addition of Mg-ATP. Electron micrographs confirmed that the associations between MAP-containing microtubules and secretory granules as well as the associations of microtubules with one another were mediated by the high molecular weight MAPs known to project from the surface of in-vitro-assembled microtubules.  相似文献   

6.
Characterization and in vitro polymerization of Tetrahymena tubulin   总被引:6,自引:0,他引:6  
Tetrahymena tubulin was purified from the cell extract using DEAE-Sephadex A-50 ion-exchanger and ammonium sulfate precipitation. About 2.2% of the total protein in the 20,000 X g supernatant was recovered as DEAE-Sephadex-purified tubulin fraction. Applying the temperature-dependent polymerization-depolymerization method to this fraction in the presence of Tetrahymena outer fibers as a seed, almost pure tubulin was obtained. Tetrahymena tubulin dimer showed different behavior on SDS-polyacrylamide gels from porcine brain tubulin, and showed very low affinity for colchicine, amounting to about one-twentieth of the binding to porcine brain tubulin. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragment induced polymerization as demonstrated by viscometric measurements, but the reconstituted microtubules were very unstable in the absence of glycerol. Microtubule-depolymerizing agents such as Ca2+ ions, low temperature, or colchicine all inhibited in vitro polymerization. Although Tetrahymena tubulin purified by the polymerization-depolymerization method could copolymerize with porcine brain microtubules, the DEAE-Sephadex-purified tubulin fraction suppressed the initial rate of porcine brain microtubule assembly in vitro. There seemed to be no differences between cytoplasmic tubulin and outer fiber tubulin in colchicine binding activity or SDS-gel electrophoretic behavior, or between the fine structure of both reconstituted microtubules observed by electron microscopy.  相似文献   

7.
Microtubule protein from Ehrlich ascites tumor cells purified by an in vitro polymerization process in the absence of glycerol and calcium chelators contains several accessory proteins but lacks the high molecular weight proteins which are present in neurotubulin. DEAE-Sephadex chromatography of two-times cycled tubulin removes these nontubulin proteins, resulting in pure tubulin, as critically examined by sodium dodecyl sulfate gel electrophoresis. This tubulin can readily assemble into microtubules in assembly buffer, at low magnesium concentrations, without glycerol and at tubulin concentrations above 0.8 mg/mL. Electron microscopy shows that the tubules are identical with normal microtubules. When the purified tubulin fraction was reduced and carboxymethylated, a significant minor protein component could be observed electrophoretically, migrating between alpha- and beta-tubulin. At present, the identity and function of this protein are not known. The results demonstrate that the in vitro assembly of tubulin from Ehrlich ascites tumor cells does not require high molecular weight proteins or gamma-like factor(s) as has been proposed for the neurotubulin system.  相似文献   

8.
The association of brain tubulin, as measured by the temperature-dependent development of turbidity at 350 nm, is greatly stimulated by the detergent Nonidet P-40 in crude extracts of rat brain tissue. Stimulation of turbidity development is also obtained with partially purified rat brain tubulin treated with Nonidet or other detergents, or preincubated with phospholipase C or D; treatment with bovine pancreatic phospholipase A2 produces an inhibition. Exogenous phospholipids, diglycerides, other related derivatives, and lipophilic extracts of tubulin and brain supernatants can also alter the turbidity development. In addition, microtubules arising from tubulin obtained in the presence of Tween-20 or Nonidet P-40 exhibit a 50 and 100% increased specific viscosity, respectively, over that of tubulin prepared in the absence of detergent or in the presence of Kyro or Triton N-101. The effectiveness of these detergents in removing phospholipids from tubulin preparations follows a similar pattern: Nonidet P-40 removes 80%, Tween-20 removes 50%, and Kyro or Triton N-101 removes none. The total mass of microtubule formed, as determined by sedimentation, is the same regardless of the effect of the detergents on the viscosity. The microtubules obtained in the presence of Nonidet P-40 have a normal appearance when examined by electron microscopy, and their composition on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is indistinguishable from that of standard tubulin, especially with regard to the minor protein bands always present in the tubulin preparations. The results obtained suggest that the phospholipids associated to brain tubulin preparations might have a role in determining the association of tubulin and/or the final dimensions of the assembled microtubules.  相似文献   

9.
Microtubules represent cytoplasmic structures that are indispensable for the maintenance of cell morphology and motility generation. Due to their regular structural organization, microtubules have become of great interest for preparation of in vitro nanotransport systems. However, tubulin, the major building protein of microtubules, is a thermolabile protein and is usually stored at −80 °C to preserve its conformation and polymerization properties. Here we describe a novel method for freeze-drying of assembly-competent tubulin in the presence of a nonreducing sugar trehalose. Even after prolonged storage at ambient temperature, rehydrated tubulin is capable of binding antimitotic drugs and assembling to microtubules that bind microtubule-associated proteins in the usual way. Electron microscopy confirmed that rehydrated tubulin assembles into normal microtubules that are able to generate motility by interaction with the motor protein kinesin in a cell-free environment. Freeze-drying also preserved preformed microtubules. Rehydrated tubulin and microtubules can be used for preparation of diverse in vitro and in vivo assays as well as for preparation of bionanodevices.  相似文献   

10.
The cell body of Trypanosomatidae is enclosed in densely packed, crosslinked, subpellicular microtubules closely underlying the plasma membrane. We isolated the subpellicular microtubules from bloodstream Trypanosoma brucei parasites by use of a zwitterion detergent. These cold stable structures were solubilized by a high ionic strength salt solution, and the soluble proteins that contained tubulin along with several other proteins were further fractionated by Mono S cation exchange column chromatography. Two distinct peaks were eluted containing one protein each, which had an apparent molecular weight of 52 kDa and 53 kDa. (Mr was determined by SDS-gel electrophoresis). Only the 52 kDa protein showed specific tubulin binding properties, which were demonstrated by exposure of nitrocellulose-bound trypanosome proteins to brain tubulin. When this protein was added to brain tubulin in the presence of taxol and GTP, microtubule bundles were formed with regular crosslinks between the parallel closely packed microtubules. The crosslinks were about 7.2 nm apart (center to center). Under the same conditions, but with the 53 kDA protein or without trypanosome derived proteins, brain tubulin polymerized to single microtubules. It is thus suggested that the unique structural organization of the subpellicular microtubules is dictated by specific parasite proteins and is not an inherent property of the polymerizing tubulin. The in vitro reconstituted microtubule bundles are strikingly similar to the subpellicular microtubule network of the parasite.  相似文献   

11.
The in vitro assembly of flagellar outer doublet tubulin   总被引:17,自引:16,他引:1       下载免费PDF全文
Flagellar outer doublet microtubules were solubilized by use of sonication, and the tubulin was reassembled in vitro into single microtubules containing 14 and 15 protofilaments. The tubulin assembly was dependent on both the KCl and tubulin concentrations, exhibiting a critical concentration of 0.72 mg/ml at optimum solvent conditions. Flagellar tubulin was purified by cycles of temperature-dependent assembly-disassembly and molecular sieve chromatography, and characterized by two-dimensional gel electrophoresis. Although doublet microtubules were not formed in vitro, outer doublet tubulin assembled onto intact A- and B-subfibers of outer doublet microtubules and basal bodies of Chlamydomonas; the rate of assembly from the distal ends of these structures was greater than that from the proximal ends. Microtubule-associated proteins (MAPs) from mammalian brain stimulated outer doublet tubulin assembly, decorating the microtubules with fine filamentous projections.  相似文献   

12.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

13.
A protein which binds to tubulin polymer was isolated from a human colonic tumor cell line. This protein has a molecular mass of 35 kDa, as determined by polyacrylamide slab gel electrophoresis. The protein was purified by affinity chromatography on taxol-stabilized microtubules, and it did not cross-react with anti-MAP2 or anti-tau antibodies. This protein was identified as glyceraldehyde-3-phosphate dehydrogenase by its enzyme activity and immunoblotting experiments. The purified protein caused a pronounced enhancement in the turbidity increase produced by in vitro tubulin polymerization, and electron microscopic observations revealed the presence of bundles of microtubules.  相似文献   

14.
It is much more difficult for tubulin from plant sources to polymerize in vitro than tubulin from animal sources. Taxol, a most widely used reagent in microtubule studies, enhances plant microtubule assembly, but hinders microtubule dynamics. Dimethyl sulfoxide (DMSO), a widely used reagent in animal microtubule studies, is a good candidate for the investigation of plant microtubule assembly in vitro.However, proper investigation is lacking about the effects of DMSO on plant microtubule assembly in vitro.In the present study, DMSO was used to establish optimal conditions for the polymerization of plant tubulin. Tubulin, purified from lily pollen, polymerizes into microtubules at a critical concentration of 1.2mg/mL in the presence of 10% DMSO. The polymers appear to have a normal microtubule structure, as revealed by electron microscopy. In the presence of 10% DMSO, microtubule polymerization decreases when the pH of the medium is increased from 6.5 to 7.4. Both the polymerization rate and the mass of the polymers increase as temperature increases from 25 to 40 ℃. Tubulin polymerizes and depolymerizes along with cycling of temperature, from 37 to 4 ℃, or following the addition to or the removal of Ca2 from the medium. When incubated with nuclei isolated from tobacco BY-2 suspension cells, tubulin assembles onto the nuclear surface in the presence of 10% DMSO. Labeling lily pollen tubulin with 5- (and 6-)carboxytetramethyl-rhodamine succinimidyl ester (NHS-rhodamine) was performed successfully in the presence of 10% DMSO. Labeled tubulin assembles into a radial structure on the surface of BY-2 nuclei. The polymerization of lily pollen tubulin is also enhanced by microtubule-associated proteins from animal sources in the presence of 10% DMSO. All the experimental results indicate that plant tubulin functions normally in the presence of DMSO. Therefore, DMSO is an appropriate reagent for plant tubulin polymerization and investigation of plant microtubules in vitro.  相似文献   

15.
Paclitaxel (Taxol) and the epothilones are antimitotic agents that promote the assembly of mammalian tubulin and stabilization of microtubules. The epothilones competitively inhibit the binding of paclitaxel to mammalian brain tubulin, suggesting that the two types of compounds share a common binding site in tubulin, despite the lack of structural similarities. It is known that paclitaxel does not stabilize microtubules formed in vitro from Saccharomyces cerevisiae tubulin; thus, it would be expected that the epothilones would not affect yeast microtubules. However, we found that epothilone A and B do stimulate the formation of microtubules from purified yeast tubulin. In addition, epothilone B severely dampens the dynamics of yeast microtubules in vitro in a manner similar to the effect of paclitaxel on mammalian microtubules. We used current models describing paclitaxel and epothilone binding to mammalian beta-tubulin to explain why paclitaxel apparently fails to bind to yeast tubulin. We propose that three amino acid substitutions in the N-terminal region and at position 227 in yeast beta-tubulin weaken the interaction of the 3'-benzamido group of paclitaxel with the protein. These results also indicate that mutagenesis of yeast tubulin could help define the sites of interaction with paclitaxel and the epothilones.  相似文献   

16.
Preparations of cycled tubulin from Ehrlich ascites tumor cells contain several acessory proteins; once or twice cycled microtubule preparations are usually composed of fibers 10 nm in diameter, but lack vimentin. Highly purified tubulin consists of α- and β-tubulin and a minor component which was identified by peptide mapping as a second β-chain. This pure tubulin is able to form in vitro at low concentrations (1 mg protein/ml) fibers of about 10 nm width, and at higher concentrations (3.5 mg protein/ml) normal microtubules.  相似文献   

17.
A protein of 15 kDa (p15) was isolated from Trypanosoma brucei subpellicular microtubules by tubulin affinity chromatography. The protein bound tubulin specifically both in its native form and after SDS-PAGE in tubulin overlay experiments. p15 promoted both the in vitro polymerization of purified calf brain tubulin and the bundling of preformed mammalian microtubules. Immunolabeling identified p15 at multiple sites along microtubule polymers comprising calf brain tubulin and p15 as well as on the subpellicular microtubules of cryosectioned trypanosomes. Antibodies directed against p15 did not cross react with mammalian microtubules. It is suggested that p15 is a trypanosome-specific microtubule-associated protein (MAP) that contributes to the unique organization of the subpellicular microtubules.  相似文献   

18.
Summary Microtubule-associated proteins (MAPS) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution.The addition of estramustine phosphate to microtubules reconstituted of MAPS prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4° C was dependent on intact bindings between the tubulin and MAPs.Abbreviations Pipes 1,4-Piperazinediethanesulfonic acid - EDTA Ethylenedinitrilo Tetraacetic Acid - MAPs Microtubule-Associated Proteins - SDS-PAGE SDS-Polyacrylamide Gel Electrophoresis  相似文献   

19.
Brain slices were used to examine comparatively the incorporation of [14C]tyrosine into the C terminus of alpha-tubulin of the microtubule and non-assembled tubulin pools. We found that the incorporation of [14C]tyrosine from 5 min up to 60 min of incubation was higher in microtubules than in non-assembled tubulin. The possibility that this result was due to the activity of tubulin carboxypeptidase or tubulin:tyrosine ligase during the in vitro isolation of tubulin was discarded. We also found that tubulin:tyrosine ligase was mainly associated with microtubules when brain slices were homogenized under microtubule-preserving conditions. Conversely the enzyme behaved as a soluble entity when homogenization was performed under conditions that do not preserve microtubules. In addition, soluble tubulin:tyrosine ligase did not become sedimentable when in vitro conditions were changed to induce the formation of microtubules. The results presented in this work indicate the possibility that, in vivo, microtubules and not tubulin dimers are the major substrate for tubulin:tyrosine ligase. This is in contrast with previous findings from in vitro experiments, which showed a preference of the ligase for non-assembled tubulin.  相似文献   

20.
The microtubule-associated protein TOGp, which belongs to a widely distributed protein family from yeasts to humans, is highly expressed in human tumors and brain tissue. From purified components we have determined the effect of TOGp on thermally induced tubulin association in vitro in the presence of 1 mm GTP and 3.4 m glycerol. Physicochemical parameters describing the mechanism of tubulin polymerization were deduced from the kinetic curves by application of the classical theoretical models of tubulin assembly. We have calculated from the polymerization time curves a range of parameters characteristic of nucleation, elongation, or steady state phase. In addition, the tubulin subunits turnover at microtubule ends was deduced from tubulin GTPase activity. For comparison, parallel experiments were conducted with colchicine and taxol, two drugs active on microtubules and with tau, a structural microtubule-associated protein from brain tissue. TOGp, which decreases the nucleus size and the tenth time of the reaction (the time required to produce 10% of the final amount of polymer), shortens the nucleation phase of microtubule assembly. In addition, TOGp favors microtubule formation by increasing the apparent first order rate constant of elongation. Moreover, TOGp increases the total amount of polymer by decreasing the tubulin critical concentration and by inhibiting depolymerization during the steady state of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号