首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

2.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

3.
ROBSON  M. J. 《Annals of botany》1973,37(3):487-500
The leaf growth, tiller production, light interception, anddry weight increase of a simulated sward of S24 perennial ryegrass(Lolium perenne) were followed during the development of thesward from a collection of two-leaved seedlings to a closedcanopy with an LAI of 23, of which 15 consisted of green leaflaminae. The dry weight of live shoots increased exponentiallyat first, but then entered a long linear phase of increase.This was equivalent to a crop growth rate of 200 Kg ha–1day–1 and a conversion efficiency of radiant energy (400–700nm) of 7.2 per cent. Towards the end of the growth period therate of increase of live shoots declined rapidly to zero anda ceiling yield was reached equivalent to 10 metric tons ha–1.Leaf growth continued at a high rate, but was equalled by therate of leaf death, so that the weight of live leaf tissue remainedconstant. By this time the swards had achieved a stable tillerpopulation (about 1 cm–1), each tiller bore a constantnumber of live leaves (about three), and the length of eachnewly expanded leaf equalled the length of the old leaf it replaced(about 70 cm). The swards were grown in Perlite so that in theabsence of soil fauna dead leaves accumulated at the base ofthe sward where, after 12 weeks, they accounted for 19 per centof the total weight of dry matter produced.  相似文献   

4.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

5.
ROBSON  M.J. 《Annals of botany》1982,49(3):331-339
Young plants of two selection lines of Lolium perenne cv. S23with ‘fast’ and ‘slow’ rates of ‘maturetissue’ respiration were individually grown from seed,together with plants of S23, their common parent, in 9.2 cmpots in a controlled environment at 20/15 °C day/night temperatures. No significant differences were found between the genotypesin leaf extension and tiller production during this early stageof their growth. They did differ however, by an average of 26%,in the rate of dark respiration of fully expanded leaf laminae.The use of a simple model demonstrated that such a differencein respiration could alone account for the different rates ofdry matter production shown by the selection lines when grownas young crops from seed. Possible penalties of ‘slow’respiration are also considered. Lolium perenne L., ryegrass, respiration, maintenance respiration, stimulated swards, leaf growth, tiller production, carbon economy  相似文献   

6.
The photosynthetic potential of successive youngest fully-expandedleaves of S24 L. perenne, grown as simulated swards under naturalenvironmental conditions, was measured during establishmentin autumn, over winter and during the transition from vegetativeto reproductive growth the following spring. Measurements weremade at a standard light energy receipt of 250 J m–2 s–1(400–700 nm) and at 15 °C. The photosynthetic potential of the leaves decreased in autumnas the swards increased in density under worsening environmentalconditions. During the spring, photosynthetic rates rose fromlow over-winter values so that by March, before stem elongationbegan, they were equal to the rates in the previous autumn.Following stem elongation there was a further increase in leafpotential. Reasons for these changes in leaf potential are discussed. During spring, the photosynthetic potential of the canopy alsorose - both as measured, and as predicted by the Monteith modelof canopy photosynthesis. Use of the model suggested that increasingleaf potential made the greatest contribution to the rise inthe potential of the canopy, although, following stem elongation,changes in LAI and canopy structure had a further significanteffect.  相似文献   

7.
Festuca arundicacea and Lolium perenne were grown in a controlled-environmentwind tunnel at high (7.4 m s–1) or low (1.0 m s–1)windspeed. The rate of leaf extension was markedly reduced atthe high windspeed. This effect could not be attributed to waterstress, for, although the leaf conductance increased with exposureto high wind, no effect on leaf water potential was detected.Nor was the rate of photosynthesis affected when the windspeedwas changed. Moreover, concentrations of ethylene in the windtunnel were too low to explain the observations. It is suggestedthat mechanical stimulus itself may have caused the reductionin leaf growth rate.  相似文献   

8.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

9.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–0.5.0mol m–3 caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale, x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1–4. Pasture grasseswere supplied either 0.5 or 50 mol m–3 NO3. Increasedapplied NO3 (0.5–5.0 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus wiltdenowii, leaves 2–4ofFestuca arundinaceae and leaves 3 and 4 of Lolium muitiflorum.In addition, length of leaves 3 and 4 of B. witidenowii increasedwith increased NO3. Increased NO3 resulted inincreased area of leaves 2–4 of Dactylis gtomerata andLolium perenne and leaves 3 and 4 of Phalaris aquaiica but hadno effect on extension growth of all three species. Avena sativa L, oat, Hordeum vulgare L, barley, Secale cereale L, rye, x Triticosecale Wittm, triticale, Triticum aestivum L, wheat, Bromus willdenowii Kunth, prairie grass, Dactylis gtomerata L, cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multijlorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate, leaf extension, leaf expansion  相似文献   

10.
The crop growth rates and structures of three temperate foragegrasses Lolium perenne cv. S24, L. perenne cv. Reveille andFestuca arundinacea cv. S170, were examined in the field duringa summer growth period. The growth rates of the varieties wereremarkably similar at 7 g DM m–2 day–1. The angularstructures of the varieties were different and they varied duringthe experiment. However, these differences did not seem to affectcrop growth rates. Nevertheless, a decrease in the efficiencyof light energy conversion of approximately 24 per cent wasobserved after a change to a more prostrate form of canopy dueto lodging. There appeared to be an inverse relationship betweenthe number of tillers per unit ground area and the weight ofan individual stem. There were large numbers of relatively lighttillers in S24 whereas S1 70 had fewer but heavier tillers.Furthermore, S24 had many small leaves per unit ground areacompared with SI70 which had fewer longer leaves per groundarea and a slower rate of leaf appearance. There were diurnalchanges in the rates of leaf extension for all the varieties.The mean daily extension rates declined as the canopies developed.  相似文献   

11.
Profiles of shortwave radiation, net radiation and temperaturewere measured in swards of three grasses of contrasting structureLolium perenne cv. S24, L. perenne cv. Reveille and Festucaarundinacea cv. S170. Measurements were also made of the reflectionof shortwave radiation, leaf water potential and stomatal resistance.Differences in canopy structure influenced the absorption andreflection of radiation by the varieties. The absorption ofnet radiation and its influence on air temperature inside thecanopy was shown to vary with canopy structure. Calculationsshowed that diurnal changes in the reflection and transmissionof light (400–700 nm) would have little effect on canopyphotosynthesis. No clear relationship between leaf extensionrate, temperature and leaf water potential could be established,although decreases in water potential did appear to reduce thepotential response of leaf extension rate to temperature.  相似文献   

12.
Plants of ryegrass (Lolium perenne L. cv. Melle) were grownfrom the early seedling stage in growth cabinets at a day/nighttemperature of 20/15 °C, with a 12-h photoperiod, and aCO2 concentration of either 340 or 680 ± 15 µl1–1 CO2. Young, fully-expanded, acclimated leaves fromprimary branches were sampled for length of stomata, and ofepidermal cells between stomata, numbers of stomata and epidermalcells per unit length of stomatal row, numbers of stomatal rowsacross the leaf and numbers of stomatal rows between adjacentvein ridges. Elevated CO2 had no significant effect on any ofthe measured parameters. Elevated CO2, Lolium perenne, ryegrass, stomatal distribution, stomatal size  相似文献   

13.
Lolium temulentum plants were grown at 20 °C, under an 8-hdaylength, in a controlled-environment chamber, and the kineticsof leaf expansion were observed by measuring the movement ofan optical grid attached to the fourth leaf. The leaf emerged23–24 d after sowing and was fully expanded 9–10d later. Extension rate was maximal between the second and fifthdays after emergence and declined markedly thereafter. Duringthe rapid growth phase the rate of elongation exhibited a distinctdiurnal rhythm, fluctuating between 1.9 to 2.3 mm h–1in the light period, and 1.3 to 1.7 mm h–1 in the dark.A circadian oscillation with a period of about 27 h was observedin leaves elongating in continuous darkness. When plants weretransferred to 5 °C soon after emergence of the fourth leafthere was an immediate reduction in rate of growth to about22 per cent of the rate at 20 °C: the Q10 for the mean elongationrate in the range 20–5 °C was 3.7. When plants weretransferred from 20 to 2 °C at fourth leaf emergence, meanextension rate declined to less than 5 per cent, correspondingto a Q10 in the range 5–2 °C of more than 300. Furthermore,growth at 2 °C was confined almost entirely to the darkphase of the photoperiod cycle. The responsive tissue was shownto be a small area of expanding leafless than 1.5 cm above theshoot apex and the possible mechanisms underlying low temperatureeffects in this region are discussed. Lolium temulentum L., leaf growth, auxanometer, low temperature, diurnal rhythm  相似文献   

14.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–50mol m–3; caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1-4. Pasture grasses weresupplied either 0.5 or 50 mol m–3; NO3. Increasedapplied NO3 (0.5–50 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus willdenowii leaves 2–4of Festuca arundinaceae and leaves 3 and 4 of Lolium multiflorum.In addition, length of leaves 3 and 4 of B. willdenowii increasedwith increased NO3. Increased NO3 resulted in increased areaof leaves 2–4 of Daciylis glomerata and Lolium perenneand leaves 3 and 4 of Phalaris aquatica but had no effect onextension growth of all three species. Avena saliva L., oat, Hordeum vulgare L., barley, Secale cereaie L., rye, x Triticosecale Wittm, triticale, Triticum aestivum L., wheat, Bromus willdenowii Kunth, prairie grass, Dactylis glomerata L., cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multiflorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate,, leaf extension, leaf expansion  相似文献   

15.
ROBSON  M. J. 《Annals of botany》1981,48(3):269-273
Fully light-intercepting simulated swards of S24 perennial ryegrasswere exposed to contrasting environmental conditions in a growthroom for 4 days. Half experienced 20 h days of 120 Wm–2(400–700. nm) and 5 °C, and came to have a WSC (watersoluble carbohydrate) content of 235 mg g–1 and half 4h days of 20 Wm–2 and 25 °C leading to a WSC of 25mg g–1. Their rates of CO2 efflux were monitored at anumber of temperatures during an 8 h dark period; half experiencedincreasing (5–30 °C) and half decreasing (30–5°C) temperatures. The ‘high’ WSC swards hadrespiration rates of 3.7 mg CO2 g–1 (d. wt) h–1at 15 °C, and the ‘low’ swards 0.8 mg CO2 g–1h–1. The order in which the temperatures were experiencedwas immaterial. Even the ‘low’ WSC swards showedno evidence of a respiratory decline during the dark periodthat could be attributed to substrate shortage. The relationshipbetween temperature and CO2 efflux was best represented by logisticcurves. Even so, a Q10 of 2 fitted the data reasonably well,at least up to 20 °C, and has practical advantages wheninterpolating estimated between measured values of respirationin the construction of a carbon balance sheet. Lohum perenne L., ryegrass, respiration, temperature, Q10, soluble carbohydrate content, simulated sward  相似文献   

16.
Wheat, red clover and ryegrass were grown in flowing solutionculture with sufficient (+ Cu) and deficient (–Cu) suppliesof copper. The rates of Cu absorption (µg g–1 dryroot day–1) did not differ greatly between species ineither treatment. Wheat plants, when transferred from the –Cu to the +Cu treatment, absorbed Cu at a much slower rate thanthose which had remained throughout in the + Cu treatment. Inall plants considerable proportions of the absorbed Cu wereretained in the roots, even when the plants were Cu-deficient,and the concentration in roots usually exceeded that in anypart of the shoots in both treatments. Transferring wheat plantsfrom the +Cu to the –Cu treatment decreased the concentrationin all plant parts except old leaves; similarly, transferringfrom the –Cu to +Cu treatment increased the concentrationin all parts of the shoots, execept old leaves, and in the roots. Lolium perenne, Trifolium pratense, Triticum aestivum, ryegrass, red clover, wheat, absorption, copper, flowing solution culture  相似文献   

17.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

18.
Plants of Lolium perenne L. cv. S23 were grown in sand culturesupplied with either ammonium (NH4+) or nitrate (NO3)in an otherwise complete nutrient solution at 12°C or 20°C.Three weeks after germination, plants were clipped weekly tosimulate grazing. After 10 weeks growth all nitrogen (N) wassupplied enriched with 15N to quantify the effects of form ofN supply and temperature on the relative ability of currentroot uptake and remobilization to supply N for laminae regrowth. The form of N supply had no effect on the dry matter partitioning,while at 20°C more dry weight was allocated to laminae regrowthand less to the remaining plant material. The current root uptakeof N, which subsequently appeared in the laminae regrowth, wassimilar for plants supplied with NH4+ or NO3, and bothwere equally reduced at the lower temperature of growth. Remobilizationof N to laminae regrowth was greater for plants receiving NH4+than NO3; remobilization with either form of N supplywas reduced at the lower temperature of growth. Remobilizationwas reduced to a lesser extent at 12°C than current rootuptake. It was concluded that remobilization became relativelymore important in supplying N for regrowth of laminae at lowertemperatures. Key words: Lolium perenne, ammonium, nitrate, temperature, remobilization  相似文献   

19.
WILSON  D. 《Annals of botany》1982,49(3):303-312
Selections for slow and for fast rate of dark respiration ofmature leaves were made from within Lolium perenne cv. S23.Selected parents were pair-crossed to provide 15 F1 familieswith slow respiration and 15 with fast. Dark respiration was inherited and families with contrastingrates were subjected to sequentially harvested growth analysesfrom the third leaf stage to that of 95 per cent light interceptionin a growth room. Seven periods of regrowth of simulated swardsof the families were then recorded. During development of theprimary canopy, growth of the selections did not differ untilthe final harvest interval. At this stage slow respiration familieshad faster (P < 0.05) net assimilation rate and greater plantdry weight (P < 0.05) and leaf area index (P < 0.05) thanthe fast respiration group. Relative growth rate followed thesame trend. In the swards after each regrowth dry matter yieldof the slow respiration group was greater than that of the fast. In another experiment, simulated swards of six slow respirationfamilies yielded more than swards of six fast respiration familiesover sequential regrowth periods in a glasshouse from May toNovember: S23 was intermediate. Differences were most duringAugust and September. Crop growth rate at each harvest correlated(P < 0.05 or P < 0.01) with previously determined leafrespiration at 25 °C. Leaf protein levels in August weaklycorrelated (r = +0.57, P < 0.05) with respiration rate perunit dry weight but there was a significant residual negativecorrelation (r = –0.67, P < 0.05) between the rateper unit protein and growth at that time. Results are discussedin relation to the concept of ‘maintenance-relàted’respiration. Lolium perenne L., perennial ryegrass, respiration, maintenance respiration, relative growth rate, leaf area ratio  相似文献   

20.
The partition of 14C labelled current assimilates to root insimulated swards of Lolium perenne cv. S24 was measured duringthe transition from vegetative growth in autumn to reproductivegrowth in spring under close to natural conditions of lightand temperature. Assimilate partitioning was also measured in‘established’ swards cut three times during thegrowing season and in vegetative ‘seedling’ swardsgrowing in autumn and in spring. All measurements were madewhen the swards had achieved more than 90 per cent light interception,and all swards were abundantly supplied with water and mineralnutrients. During autumn there was a gradual decrease in the proportionof assimilates partitioned to the roots in both the ‘established’and the ‘seedling’ swards. In the established swards,partition to roots was low over winter, increased during earlyspring, but decreased dramatically, later in the spring, whenstem elongation began. In contrast, in the unvernalized vegatativeseedling swards in spring, partition to roots remained high. The seasonal pattern of assimilate partitioning is consideredin relation to changes in the natural environment and the rateat which the crop fixed carbon in photosynthesis. A decreasein the proportion of assimilates partitioned to roots duringlate spring was significant in increasing the production ofshoot at that time but seasonal differences in partition contributedvery little to the marked differences in shoot growth betweenthe spring and autumn crop. Lolium perenne L., perennial ryegrass, partition of assimilates, flowering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号