共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahmed Saeed Federico Floris Ulla Andersson Irina Pikuleva Anita L?vgren-Sandblom Maria Bjerke Martin Paucar Anders Wallin Per Svenningsson Ingemar Bj?rkhem 《Journal of lipid research》2014,55(2):313-318
There is a continuous flux of the oxysterol 27-hydroxycholesterol (27-OHC) from the circulation across the blood-brain barrier (BBB) into the brain. The major metabolite of 27-OHC in the brain is 7α-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA). We confirm a recent report describing the presence of this metabolite in cerebrospinal fluid (CSF) at a relatively high concentration. A simple and accurate method was developed for assay of 7-HOCA in CSF based on isotope dilution-mass spectrometry and use of 2H4-labeled internal standard. The concentration of this metabolite was found to be markedly increased in CSF from patients with a dysfunctional BBB. There was a high correlation between the levels of 7-HOCA in CSF and the CSF/serum albumin ratio. The concentration of 7-HOCA in CSF was not significantly affected by neurodegeneration. Our findings suggest that 7-HOCA could be used as a diagnostic marker for conditions with a dysfunctional BBB. 相似文献
2.
Zeina Ali Maura Heverin Maria Olin Jure Acimovic Anita L?vgren-Sandblom Marjan Shafaati Ann B?vner Vardiella Meiner Eran Leitersdorf Ingemar Bj?rkhem 《Journal of lipid research》2013,54(4):1033-1043
The two oxysterols, 27-hydroxycholesterol (27OH) and 24S-hydroxycholesterol (24OH), are both inhibitors of cholesterol synthesis and activators of the liver X receptor (LXR) in vitro. Their role as physiological regulators under in vivo conditions is controversial, however. In the present work, we utilized a previously described mouse model with overexpressed human sterol 27-hydroxylase (CYP27A1). The levels of 27OH were increased about 12-fold in the brain. The brain levels of HMG-CoA reductase mRNA and HMG-CoA synthase mRNA levels were increased. In accordance with increased cholesterol synthesis, most of the cholesterol precursors were also increased. The level of 24OH, the dominating oxysterol in the brain, was decreased by about 25%, most probably due to increased metabolism by CYP27A1. The LXR target genes were unaffected or slightly changed in a direction opposite to that expected for LXR activation. In the brain of Cyp27−/− mice, cholesterol synthesis was slightly increased, with increased levels of cholesterol precursors but normal mRNA levels of HMG-CoA reductase and HMG-CoA synthase. The mRNA levels corresponding to LXR target genes were not affected. The results are consistent with the possibility that both 24OH and 27OH are physiological suppressors of cholesterol synthesis in the brain. The results do not support the contention that 27OH is a general activator of LXR target genes in this organ. 相似文献
3.
Rebecca Schüle Teepu Siddique Han-Xiang Deng Yi Yang Sandra Donkervoort Magnus Hansson Ricardo E. Madrid Nailah Siddique Ludger Sch?ls Ingemar Bj?rkhem 《Journal of lipid research》2010,51(4):819-823
Patients with a recessively inherited “pure” hereditary spastic paresis (SPG5) have mutations in the gene coding for the oxysterol 7 α hydroxylase (CYP7B1). One of the expected metabolic consequences of such mutations is accumulation of oxysterol substrates due to decreased enzyme activity. In accordance with this, we demonstrate here that four patients with the SPG5 disease have 6- to 9-fold increased plasma levels of 27-hydroxycholesterol. A much higher increase, 30- to 50-fold, was found in cerebrospinal fluid. The plasma levels of 25-hydroxycholesterol were increased about 100-fold. There were no measurable levels of this oxysterol in cerebrospinal fluid. The pattern of bile acids in serum was normal, suggesting a normal bile acid synthesis. The findings are discussed in relation to two transgenic mouse models with increased levels of 27-hydroxy cholesterol in the circulation but without neurological symptoms: the cyp27a1 transgenic mouse and the cyp7b1 knockout mouse. The absolute plasma levels of 27-hydroxycholesterol in the latter models are, however, only about 20% of those in the SPG5 patients. If the accumulation of 27-hydroxycholesterol is an important pathogenetic factor, a reduction of its levels may reduce or prevent the neurological symptoms. A possible strategy to achieve this is discussed. 相似文献
4.
Honda A Miyazaki T Ikegami T Iwamoto J Maeda T Hirayama T Saito Y Teramoto T Matsuzaki Y 《Journal of lipid research》2011,52(8):1509-1516
To date, many studies have been conducted using 25-hydroxycholesterol, which is a potent regulator of lipid metabolism. However, the origins of this oxysterol have not been entirely elucidated. Cholesterol 25-hydroxylase is one of the enzymes responsible for the metabolism of 25-hydroxycholesterol, but the expression of this enzyme is very low in humans. This oxysterol is also synthesized by sterol 27-hydroxylase (CYP27A1) and cholesterol 24-hydroxylase(CYP46A1), but it is only a minor product of these enzymes. We now report that CYP3A synthesizes a significant amount of 25-hydroxycholesterol and may participate in the regulation of lipid metabolism. Induction of CYP3A by pregnenolone-16α-carbonitrile caused the accumulation of 25-hydroxycholesterol in a cell line derived from mouse liver. Furthermore, treatment of the cells with troleandomycin, a specific inhibitor of CYP3A, significantly reduced cellular 25-hydroxycholesterol concentrations. In cells that overexpressed human recombinant CYP3A4, the activity of cholesterol 25-hydroxylation was found to be higher than that of cholesterol 4β-hydroxylation, a known marker activity of CYP3A4. In addition, 25-hydroxycholesterol concentrations in normal human sera correlated positively with the levels of 4β-hydroxycholesterol (r = 0.650, P < 0.0001, n = 78), but did not significantly correlate with the levels of 27-hydroxycholesterol or 24S-hydroxycholesterol. These results demonstrate the significance of CYP3A on the production of 25-hydroxycholesterol. 相似文献
5.
6.
Zhijuan Liang Yuanbin Chen Liping Wang Dan Li Xuecheng Yang Guofeng Ma 《Cell cycle (Georgetown, Tex.)》2019,18(1):34-45
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation. 相似文献
7.
Maâmar Souidi Michel Parquet Sandrine Dubrac Olivier Audas Thierry Bécue Claude Lutton 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2000,1487(1):74-81
A method of assaying hepatic cytochrome P-450, oxysterol 7α-hydroxylase (CYP7B), was developed by combining the use of 25-[26,27-3H]hydroxycholesterol as a substrate and hydroxypropyl-β-cyclodextrin as a substrate vehicle. When these assay conditions were tested, an undesirable transformation was observed of the reaction product, 7α,25-dihydroxycholesterol, into 3-oxo-7α,25-dihydroxy-4-cholesten by the activity of 3β-hydroxy-Δ5-C27 steroid oxydoreductase, a microsomal NAD+ and NADP+ dependent enzyme of bile acid metabolism. A great improvement was reached by using a continuous NADPH generating system which constantly re-transforms NADP+ into NADPH, thus inhibiting this activity. This improved CYP7B assay, comparable to our previously described assay for cholesterol 7α-hydroxylase (CYP7A), allowed a 3-fold increase of the apparent enzyme activity. The possibility to simultaneously measure CYP7A and CYP7B activities on the same microsomal preparation was investigated. A marked decrease (?33%) in the CYP7B activity was noticed, while that of CYP7A remained unchanged. The CYP7B activity was observed to be inhibited by cholesterol (?30%) and also by the oxysterols 7α-hydroxycholesterol (?21%), 7β-hydroxycholesterol (?25%) and epicoprostanol (?20%), and by cyclosporin A (?26%). It can be concluded that this sensible and easy to perform CYP7B assay allows to observe, at least in vitro, a modulation of the enzyme activity by oxysterols. 相似文献
8.
9.
Escher G Hoang A Georges S Tchoua U El-Osta A Krozowski Z Sviridov D 《Journal of lipid research》2005,46(2):356-365
This study was aimed at developing a method for high-efficiency transient transfection of macrophages. Seven methods were evaluated for transient transfection of murine macrophage RAW 264.7 cells. The highest transfection efficiency was achieved with DEAE-dextran, although the proportion of cells expressing the reporter gene did not exceed 20%. It was subsequently found that the cytomegalovirus plasmid promoter in these cells becomes methylated. When cells were treated with the methylation inhibitor 5-azacytidine, methylation of the plasmid promoter was abolished and a dose-dependent stimulation of reporter gene expression was observed with expression achieved in more than 80% of cells. Treatment of cells with 5-azacytidine also caused increased efficiency of transfection of macrophages with plasmids driven by RSV, SV40, and EF-1alpha promoters and transient transfection of human HepG2 cells. Inhibition of methylation also increased the amount and activity of sterol 27-hydroxylase (CYP27A1) detected in RAW 264.7 cells transfected with a CYP27A1 expression plasmid. Treatment of cells with 5-azacytidine alone did not affect either cholesterol efflux from nontransfected cells or expression of ABCA1 and CYP27A1. However, transfection with CYP27A1 led to a 2- to 4-fold increase of cholesterol efflux. We conclude that treatment with 5-azacytidine can be used for high-efficiency transient transfection of macrophages. 相似文献
10.
11.
Ingemar Björkhem Magnus Hansson 《Biochemical and biophysical research communications》2010,396(1):46-49
Cerebrotendinous xanthomatosis [CTX] is a rare disease characterized by the accumulation of cholesterol and cholestanol in brain and tendons caused by a mutation in the sterol 27-hydroxylase gene [CYP27A1] involved in bile acid synthesis. Disruption of this gene in mice does not give rise to xanthomas. The gene defect leads to reduced bile acid synthesis with a compensatory increase in the activity of the rate-limiting enzyme in bile acid synthesis, cholesterol 7α-hydroxylase. This leads to a marked accumulation of 7α-hydroxylated bile acid precursors, in particular 7α-hydroxy-4-cholesten-3-one. The latter oxysterol passes the blood-brain barrier and is an efficient precursor to cholestanol. The activity of cholesterol 7α-hydroxylase is normalized by treatment with bile acids. Such treatment reduces the xanthomas in CTX patients in parallel with decreased cholestanol levels. The relationship between the accumulation of cholestanol and the development of cholesterol-rich xanthomas has however not been clarified and a suitable animal model is still lacking. 相似文献
12.
《Bioscience, biotechnology, and biochemistry》2013,77(4):916-925
Chlorella powder (CP) has a hypocholesterolemic effect and high bile acid-binding capacity; however, its effects on hepatic cholesterol metabolism are still unclear. In the present study, male Wistar rats were divided into four groups and fed a high sucrose + 10% lard diet (H), an H + 10% CP diet (H+CP), an H + 0.5% cholesterol + 0.25% sodium cholate diet (C), or a C + 10% CP diet (C+CP) for 2 weeks. CP decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but did not affect these parameters in rats fed H-based diets. CP increased the hepatic mRNA level and activity of cholesterol 7α-hydroxylase (CYP7A1). CP increased hepatic HMG-CoA reductase (HMGR) activity in the rats fed H-based diets, but not in rats fed C-based diets. CP did not affect hepatic mRNA levels of sterol 27-hydroxylase, HMGR, low-density lipoprotein (LDL) receptor, scavenger receptor class B1, ATP-binding cassette (ABC) A1, ABCG5, or ABCB11. Furthermore, the effect of a 3.08% Chlorella indigestible fraction (CIF, corresponding to 10% CP) on hepatic cholesterol metabolism was determined using the same animal models. CIF also decreased serum and liver cholesterol levels significantly in rats fed C-based diets. CIF increased hepatic CYP7A1 mRNA levels. These results suggest that the hypocholesterolemic effect of CP involves enhancement of cholesterol catabolism through up-regulation of hepatic CYP7A1 expression and that CIF contributes to the hypocholesterolemic effect. 相似文献
13.
Gottfried E Rehli M Hahn J Holler E Andreesen R Kreutz M 《Biochemical and biophysical research communications》2006,349(1):209-213
CYP27A1 catalyses hydroxylations in the biosynthesis of bile acids and the bioactivation of vitamin D3. We investigated the expression of CYP27A1 in human monocytes, monocyte-derived macrophages, and dendritic cells on mRNA and protein levels as well as its enzymatic activity in comparison with the expression of CYP27B1 and CYP24A1. Macrophages showed a strong expression of CYP27A1, whereas monocytes and dendritic cells expressed low levels of CYP27A1 mRNA. Immunohistochemistry revealed CYP27A1 and CYP27B1 protein expression in macrophages. Accordingly, macrophages converted vitamin D3 into the active metabolite 1,25(OH)2D3. Dendritic cells also metabolized vitamin D3 although to a lesser extent. This could be due to the high expression of CYP24A1, the enzyme that degrades 25(OH)D3 and 1,25(OH)2D3. Our results show that macrophages and dendritic cells are capable to perform both hydroxylation steps of the vitamin D3 metabolism suggesting a possible role of local 1,25(OH)2D3 synthesis by myeloid cells in the skin and gut. 相似文献
14.
CYP7A1基因-204位点A/C变异对启动子活性的影响 总被引:1,自引:0,他引:1
CYP7A1(cholesterol 7α-hydroxylase )在胆固醇向胆汁酸代谢途径中起着至关重要的作用.为研究该基因启动子区-204位点A/C多态性是否影响基因表达, 利用荧光素酶作为报告基因,将含有A或C等位基因的启动子区片段分别正向和反向插入不含启动子的pGL3 basic质粒载体中,再以重组体转染4种细胞株,采用双荧光素酶报告基因检测系统测定酶活性并进行比较.实验结果表明,2种基因型的正向序列启动子活性均高于相应的反向序列,含有A等位基因的启动子片段活性比含有C等位基因的片段低约1/3.TRANSFAC数据库分析显示,当-204位点等位基因为C时,可能存在1个Zic3结合位点.研究结果提示,CYP7A1基因启动子区-204位点A/C变异可减少启动子活性从而影响基因表达,其原因可能为1个潜在的Zic3结合位点的丧失. 相似文献
15.
【目的】从土壤中筛选及鉴定具有转化胆固醇能力的菌株SE-1,对转化产物进行结构鉴定,并通过一定的工艺条件优化提高转化产率。【方法】利用胆固醇为唯一碳源筛选能转化胆固醇的菌株SE-1,对菌株进行形态、生理生化特征试验及16S rRNA基因序列同源性分析确定该菌株的系统发育学地位。发酵转化产物经氯仿萃取,对转化产物进行硅胶板薄层层析法分析,用硅胶柱层析法、Sephadex LH20分离产物,通过1H-NMR、13C-NMR分析确定转化产物的化学结构。对菌株转化胆固醇的发酵培养基的碳源、氮源、底物添加方式及发酵条件进行优化。【结果】菌株SE-1为革兰氏阴性菌,生理生化特征与洋葱伯克霍尔德氏菌(Burkholderia cepacia)相似,16S rRNA序列与洋葱伯克霍尔德氏菌(GenBank No.U96927)相似性为99%。硅胶薄层层析显示转化产物为两种产物。发酵转化时,在胆固醇-吐温乳化液的添加量为1 g/L,碳源糖蜜5%,氮源(NH4)2SO40.3%,接种量4%,发酵液pH7.5,36℃发酵的条件下,7β-羟基胆固醇的产率最高,达到34.4%。【结论】分离得到的菌株SE-1鉴定为Burkholderia cepacia。菌株SE-1转化胆固醇的主产物为7β-羟基胆固醇,次产物为7-酮基胆固醇,胆固醇7β-羟基化转化率在最适的转化条件下比优化前提高了20.8%。 相似文献
16.
Omdahl JL Bobrovnikova EV Annalora A Chen P Serda R 《Journal of cellular biochemistry》2003,88(2):356-362
Although vitamin D(3) is a natural product of a sunlight-mediated process in the skin, the secosteroid's biological function is dependent upon specific cytochrome P450 enzymes that mediate the parent vitamin's bioactivation and inactivation. Cytochrome P450C1 (CYP27B1) is the regulatory rate-limiting enzyme that directs the bioactivation process through introduction of a C-1alpha hydroxyl group. The resultant 1,25-dihydroxyvitamin D(3) (1,25D) is the biologically active secosteroid hormone that directs the multitude of vitamin D-dependent actions involved with calcium homeostasis, cellular differentiation and growth, and the immune response. The circulating and cellular level of 1,25D is regulated through a coordinated process involving the hormone's synthesis and degradation. Central to the degradation and turnover of 1,25D is the regulatory multi-catalytic cytochrome P450C24 (CYP24) enzyme that directs the introduction of C-24R groups onto targeted 25-hydroxy substrates. Discussed in this article is the action of the rat CYP24 to catalyze the side-chain oxidation and cleavage of 25-hydroxylated vitamin D metabolites. Expression and characterization of purified recombinant rat CYP24 is discussed in light of mutations directed at the enzyme's active site. 相似文献
17.
Rene F. Chun Elizabeth Blatter Stephanie Elliott Sorel Fitz‐Gibbon Sandra Rieger Alvaro Sagasti John S. Adams Martin Hewison 《Cell biochemistry and function》2014,32(8):675-682
Activation of precursor 25‐hydroxyvitamin D3 (25D) to hormonal 1,25‐dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (1α‐hydroxylase). To establish new models for assessing the physiological importance of the 1α‐hydroxylase‐25D‐axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α‐hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5–150 nM) or active 1,25D (0.1–10 nM) induced dose responsive expression (15–95‐fold) of the vitamin D‐target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full‐length zebrafish cyp27b1 cDNA was then generated using RACE and RT‐PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC‐8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25‐fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Milagre I Olin M Nunes MJ Moutinho M Lövgren-Sandblom A Gama MJ Björkhem I Rodrigues E 《Neurochemistry international》2012,60(2):192-198
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons. 相似文献
19.
Lishan Zhang Ming Liu Jinglei Liu Xingkai Li Ming Yang Benhua Su Yanliang Lin 《Journal of cellular physiology》2019,234(8):12692-12700
27-Hydroxycholesterol (27-HC) has been implicated in the pathological process of estrogen receptor positive breast cancer. However, the role of 27-HC in lung adenocarcinoma is still unclear. Because bone metastasis is a main reason for the high mortality of lung adenocarcinoma, this study aimed to investigate the effect of 27-HC on osteoclastogenesis in lung adenocarcinoma microenvironment. The results showed that the conditioned media (CM) from lung adenocarcinoma cells cocultured with macrophages promoted osteoclast differentiation, which was enhanced by 27-HC. Further investigation showed that CM inhibited miR-139 expression and promoted c-Fos expression. Luciferase reporter assay identified c-Fos as a direct target of miR-139. CM also induced the expression and nuclear translocation of NFATc1 and STAT3 phosphorylation, which was enlarged by 27-HC but was attenuated by miR-139. Coimmunoprecipitation assay demonstrated that 27-HC increased the interaction between NFATc1 and phosphorylated STAT3, which was restricted by miR-139. Chromatin immunoprecipitation assay showed that pSTAT3 could bind to the promoter of c-Fos, c-Fos could bind to the promoter of NFATc1, and both pSTAT3 and NFATc1 could bind to the promoter of Oscar, which were enlarged by 27-HC but were blocked by miR-139. Knockdown of c-Fos mimicked the effect of miR-139. These results suggested that CM, especially containing 27-HC, promoted osteoclastogenesis by inhibiting miR-139 expression and activating the STAT3/c-Fos/NFATc1 pathway. 相似文献
20.
Fan Ying Yin Cai Hoi Kin Wong Xin Yi Chen Ianto Bosheng Huang Paul M. Vanhoutte Zhengyuan Xia Aimin Xu Eva Hoi Ching Tang 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(9):1029-1040
Prostaglandin E receptor subtype 4 (EP4) knockout mice develops spontaneous hypercholesterolemia but the detailed mechanisms by which EP4 affects cholesterol homeostasis remains unexplored. We sought to determine the cause of hypercholesterolemia in EP4 knockout mice, focusing on the role of EP4 in regulating the synthesis and elimination of cholesterol. Deficiency of EP4 significantly decreased total bile acid levels in the liver by 26.2% and the fecal bile acid content by 27.6% as compared to wild type littermates, indicating that the absence of EP4 decreased hepatic bile acid synthesis and their subsequent excretion in stools. EP4 deficiency negatively regulate bile acid synthesis through repression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK)-mediated cholesterol 7α-hydroxylase (CYP7A1) expression and that the hypercholesterolemia in EP4 knockout mice is due to a defect in cholesterol conversion into bile acids. Deficiency of EP4 also increased de novo cholesterol synthesis and altered cholesterol fluxes in and out of the liver. Treating high fat diet-challenged mice with the pharmacological EP4 agonist, CAY10580 (200?μg/kg body weight/day i.p) for three weeks effectively prevented diet-induced hypercholesterolemia, enhanced endogenous bile acid synthesis and their fecal excretion. In summary, EP4 plays a critical role in maintaining cholesterol homeostasis by regulating the synthesis and elimination of bile acids. Activation of EP4 serves as an effective novel strategy to promote cholesterol disposal in the forms of bile acids in order to lower plasma cholesterol levels. 相似文献