首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A population of neonatal mouse keratinocytes (epidermal basal cells) was obtained by gentle, short-term trypsin separation of the epidermal and dermal skin compartments and discontinuous Ficoll gradient purification of the resulting epidermal cells. Over 4--6 wk of culture growth at 32--33 degrees C, the primary cultures formed a complete monolayer that exhibited entire culture stratification and upper cell layer shedding. Transmission and scanning electron microscopy demonstrated that the keratinocyte cultures progressed from one to two cell layers through a series of stratification and specialization phenomena to a six to eight cell layer culture containing structures characteristic of epidermal cells and resembling in vivo epidermal development. The temporal development of primary epidermal cell culture specialization was confirmed by use of two histological techniques which differentially stain the specializing upper cell layers of neonatal mouse skin. No detectable dermal fibroblast co-cultivation was demonstrated by use of the leucine aminopeptidase histochemical technique and routine electron microscope surveillance of the cultures. Incorporation of [3H]thymidine ([3H]Tdr) was greater than 85% into DNA and was inhibited by both 20 micron cytosine arabinoside (Ara-C) and low temperature. Autoradiography and 90% inhibition of [3H]Tdr incorporation by 2 mM hydroxyurea indicated that keratinocyte culture DNA synthesis was scheduled (not a repair phenomenon). The primary keratinocytes showed an oscillating pattern of [3H]Tdr incorporation into DNA over the initial 23--25 days of growth. Autoradiography demonstrated that the cultures contained 10--30% proliferative stem cells from days 2-25 of culture. The reproducibility of both the proliferation and specialization patterns of the described primary epidermal cell culture system indicates that these cultures are a useful tool for investigations of functioning epidermal cell homeostatic control mechanisms.  相似文献   

2.
To determine the mechanisms in the triggering of thymus-independent lymphocytes (B cells) for development into antibody-forming cells (AFC), genesis of IgM AFC elicited polyclonally by nonspecific stimulation with B-cell mitogen, such as nystatin and bacterial lipopolysaccharide, was compared with that of IgM AFC specifically elicited by antigenic stimulation, using mouse spleen cell cultures as an experimental system and sheep erythrocytes (SRBC) as a test antigen. Considering that differentiation and proliferation are necessary cellular events for precursor B cells to develop into AFC, the effect of different antimetabolic agents on the generation of each type of AFC in spleen cell cultures was examined. The generation of anti-SRBC IgM hemolysin plaque-forming cells (PFC) in B-cell mitogen-stimulated spleen cell cultures was found to be less susceptible to X-irradiation or mitomycin C than that in the SRBC-stimulated cultures. These apparently paradoxical results were affiirmed using colcemid as an inhibitor of cell mitosis and hydroxyurea (HU) as an inhibitor of cellular DNA synthesis. Thus, when spleen cell cultures responding to either SRBC or B-cell mitogen were exposed to colcemid or HU during a period from 2 days to 3 days after the stimulation, the exponential generation of anti-SRBC IgM PFC in the cultures responding to SRBC was completely halted, whereas that in the cultures responding to B-cell mitogen was not. Furthermore, N6, O2′ -dibutyryl adenosine 3′, 5′ -cyclic monophosphoric acid was found to halt the exponential generation of antigen-induced anti-SRBC IgM PFC but not that of the B-cell mitogen-induced anti-SRBC IgM PFC. From these results it was suggested that B-cell mitogen might stimulate precursor Bμ cells at a late stage in the differentiative pathway to develop into AFC without cell division, and that antigenic stimulation might stimulate relatively primitive precursor Bμ cells to proliferate and then differentiate into AFC. Based on this idea, mechanisms in the triggering of B-cell activation are discussed.  相似文献   

3.
Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of (3H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of (3H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study.  相似文献   

4.
Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of (3H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of (3H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study.  相似文献   

5.
Explants of secondary xylern parenchyma tissue from Jerusalemartichoke tubers were induced to undergo cell division and de-differentiateby culture in nutrient medium. The first division was inherentlysynchronous. The system was used to study the involvement ofmessenger RNA synthesis in the induction and continuance ofcell division in previously non-dividing cells. The base analogue 5-fluorouracil (5-FU) inhibited ribosomalRNA synthesis and the processing of ribosomal RNA precursorto mature 25 S and 18 S RNAs. The synthesis of messenger-likeRNAs (heterogeneous in size, labelled to a high specific activityin a pulse incubation, and containing a polyadenylic acid sequence)was less inhibited by 5-FU. Explants grown in 5-FU did not synthesize DNA and did not divide.A direct inhibition of DNA synthesis by 5-FU added late in culturewas reversed by thymidine. An indirect inhibition of DNA synthesisoccurred when 5-FU was present from the start of culture andwas not reversed by thymidine. Because ribosomal RNA synthesisis not necessary for the induction of cell division (Fraser,1975) and because 5-FU was incorporated into mENA, probablyinterfering with its function, these results suggest that 5-FUinhibited the metabolism of mRNA which was required for DNAsynthesis and cell division. The timing of mRNA synthesis required for DNA synthesis andcell division was investigated by adding 5-FU plus thymidineto cultures at various times. By the beginning of DNA synthesisfor the first division, explants were competent, in terms ofmRNA synthesized, to complete the first division. MessengerRNA synthesis occurring before the end of the first divisionallowed explants to undergo at least three more divisions.  相似文献   

6.
The present experiments using Amoeba proteus as a single cell model show that DNA synthesis continues during and after exposure of S phase cell to N-methyl-N'-nitrosourethane (MNU). At sublethal dose levels which caused long division delays, division and growth abnormalities and mutations, the amount of [3h] thymidine ([3h]Tdr) incorporated was decreased by 20-30%; at dose levels which killed all S phase cells it was inhibited by up to 90%. There was a direct correlation between the dose of MNU used and the degree of inhibition of [3H]Tdr incorporated. The effect was rapid, mainly taking place within 20 min of treatment. Amoeba heterokaryons (HKs) were used to examine the rate of DNA synthesis of treated and untreated nuclei in the same cytoplasm, i.e. where the nuclei would have the same [h]tdr intake, the same thymidine kinase (TK) activity and the same endogenous precursor pools. Direct comparison of the nuclear DNA synthetic activity in this way revealed less difference between treated and untreated nuclei than comparisons made using the nuclear grain counts from treated and untreated amoebae. This suggested that much of the decrease in [3H]Tdr incorporation by MNU-treated S phase cells was due to a change in the cytoplasm and/or the cell membrane, rather than to nuclear damage. Thus MNU-treated nuclei were able to synthesize DNA at a near normal rate when they could draw on the resources of untreated cytoplasm, while the rate of DNA synthesis of control nuclei decreased when they occupied cytoplasm which had been exposed to high doses of MNU. These studies suggest that nuclear sites of damage were only involved when lethal doses of MNU had been used.  相似文献   

7.
We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine cerebral cortex cells that previously was shown to be a potent inhibitor of cellular protein synthesis. The following studies were carried out to characterize the potential ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked inhibition of thymidine incorporation within 24 h. When the SGP was removed from inhibited cultures, a sharp rise in 3H-thymidine incorporation followed within 3-4 h that peaked well above that measured in exponentially growing cultures, suggesting that the inhibitory action of the SGP was reversible and that a significant proportion of the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis, the inhibitory action of the SGP was monitored by direct measurement of cell number. Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3 cell division 20 h after its addition to exponentially growing cultures. Upon reversal there was a delay of 15 h before cell division resumed, when the arrested cells quickly doubled. Most, if not all, of the growth-arrested cells appeared to have been synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells, and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate cells, fibroblast and epitheliallike cells, primary cells and established cell cultures, as well as a wide range of transformed cell lines.  相似文献   

8.
In this study, we describe the effect of red and blue light on the timing of cell division, DNA synthesis, and activity and presence of cyclin-dependent kinases (CDKs), in synchronous cultures of the unicellular green alga Chlamydomonas reinhardtii. Cell division and DNA synthesis were found to occur later in cells grown in blue or white light, than in red light. CDK-like activity, measured using a histone H1 kinase assay, correspondingly occurred later in cultures that were grown in blue light compared to cultures grown in red light. The amount of CDK-like proteins, as detected using an antibody against the PSTAIRE motif, showed a maximum during the division phase. We conclude that the mechanism that causes the delay in the timing of cell division in blue light has its action before DNA replication takes place and also precedes the increase in CDK-like activity.  相似文献   

9.
Freezing of Bacillus subtilis in liquid nitrogen results, upon thawing of the cells, in an enhanced deoxyribonucleoside triphosphate and reduced thymidine (Tdr) incorporation into cellular deoxyribonucleic acid (DNA). The DNA synthesized from thymidine triphosphate (TTP) was made by a "repair"-type system as determined by density transfer experiments. The mono- and diphosphate precursors were also incorporated by a "repair"-type synthesis. When Tdr was used as the radioactive precursor in the assay mixture, the product was only that expected from a semiconservative synthesis. Superlethal ultraviolet light exposure of the freeze-treated cells stimulated incorporation of phosphorylated precursors into DNA. Tdr uptake was greatly reduced by ultraviolet exposure, and only repair synthesis was observed. TTP and Tdr do not compete with one another in this system. The possibility that two DNA synthesizing systems exist in separate, non-mixing cellular compartments is considered.  相似文献   

10.
The mechanism by which 2-ME acts as a macrophage-substitute for the induction of a primary PFC response to SRC in vitro was studied in macrophage-depleted mouse spleen cell cultures. 2-ME could replace macrophages only in FCS-supplemented cultures. Evidence is presented that the function of 2-ME is independent of residual macrophages. Neither normal nor macrophage-depleted spleen cell cultures from congenitally athymic nude mice supplemented with 2-ME, with or without FCS, could give rise to a primary in vitro anti-SRC immune response. 2-ME, at an optimal concentration of 10(-5) M, induced DNA synthesis in normal and macrophage-depleted spleen cells in both FCS-containing and serum-free cultures. The peak response occurred on day 3. The stimulation was accompanied by a polyclonal B cell activation to antibody secretion which was much more pronounced in FCS-containing than in serum-free cultures. Spleen cells from nude mice showed a weaker DNA stimulation than did cells from normal mice in FCS-containing cultures, and nearly no response under serum-free conditions. T cells obtained by a nylon column adherence method from normal mouse spleen cells showed good DNA synthetic responses in FCS-containing, but no response in serum-free cultures. These results show that 2-ME has weak mitogenic activity for B cells, and in combination with FCS, strong mitogenic activity for T cells. Since the macrophage provides stimulation to the T cell in the primary anti-SRC PFC response in vitro, these results suggest that the direct mitogenic activity of 2-ME with FCS on T cells provides the functional substitution for macrophages.  相似文献   

11.
The secondary cultures of chick embryo cells were suspended and transferred to homologous cell cultures. Cell adhesion and proliferation were studied in these superinoculated cultures. It was shown that added cells soon adhered to the underlying cell layer which results in a prompt increase in culture density followed by the activation of DNA synthesis and cell division. Stimulation of cell proliferation involved both cell subpopulations composing the superinoculated culture: cells seeded on the built-up cell layer and cells of the layer. The contact nature of added cell mitogenic action on overlaid cell proliferation was evidenced. The cell system described can be used to investigate the adhesive properties of the cell layer apical surface, the relationship between cell growth rate and culture density, and the contact stimulation of cell proliferation.  相似文献   

12.
Cell interaction requirements for generation of primary IgM, IgG and IgA responses to heterologous erythrocytes in mouse spleen cell cultures have been investigated. Interactions among antigen, macrophages, “helper” thymus-derived cells and precursors of antibody-producing cells are required and are facilitated by incubation of cultures on a rocking platform. Macrophages are required in the cultures for 48 hr for generation of optimal IgM, IgG and IgA responses. Intact erythrocyte antigen is necessary for 48 hr for development of optimal IgM responses, and for 72 hr for optimal IgG and IgA responses. Precursors of IgM antibody-producing cells appear to be “activated” by 48 hr incubation; precursors of IgG and IgA antibody-producing cells appear to be “activated” by 72 hr. These “activated” precursor cells can subsequently undergo final cycles of cell division and differentiate into mature antibody producing cells when incubated stationary in the presence of very few macrophages and in the absence of intact erythrocyte antigen.  相似文献   

13.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

14.
5-Fluorouracil (FU) at a concentration of 16 muM almost totally inhibited deoxyribonucleic acid (DNA) synthesis and cell division by Bacillus cereus, whereas growth continued at an exponential rate (25% of control for at least 3 h). In cultures simultaneously given 160 muM uracil (U) along with the FU, DNA synthesis still stopped, but cell division continued for one generation at the control rate and at a much slower rate beyond that; in the meantime, cell mass continued to increase at an essentially normal rate. The cells in cultures treated with FU or FU plus U were elongated and contained about half of the control content of DNA, with one nuclear area per cell instead of two. Loss of cloning ability, unlike mass increase, was always correlated with the continuing inhibition of DNA synthesis, in either FU- or U plus FU-treated cultures.  相似文献   

15.
We have examined the effect of chemically modulating intracellular glutathione (GSH) levels on murine lymphocyte activation. Lymphocyte activation was determined by the induction of polyamine synthesis (ornithine decarboxylase (ODC) induction) and DNA synthesis ([3H]thymidine([3H]Tdr) incorporation). Intracellular GSH levels were enhanced using L-2-oxothiazolidine-4-carboxylate (OTC), which delivers cysteine intracellularly, and suppressed by buthionine sulfoximine (BSO), which inhibits gamma-glutamylcysteine synthetase. In addition, the thiol 2-mercaptoethanol (2-ME) was tested for its ability to augment intracellular GSH levels. Our results indicate that both OTC and 2-ME enhance GSH concentrations and [3H]Tdr incorporation in resting and mitogen (concanavalin A)-stimulated cells. The induction of ODC by concanavalin A (Con A) was augmented by the addition of OTC or 2-ME. The GSH concentration of Con A-stimulated cells was reduced when compared to resting cells; however, it was markedly enhanced by OTC or 2-ME. The stimulatory effects of 2-ME on GSH concentrations, [3H]Tdr incorporation, and ODC induction in both resting and Con A-stimulated cells were much more potent than those of OTC. In contrast, BSO suppressed intracellular GSH and [3H]Tdr incorporation in resting and Con A-stimulated cells. BSO also inhibited the promotion of intracellular GSH concentrations and [3H]Tdr uptake by OTC or 2-ME. However, BSO did not affect the induction of ODC by Con A or its enhancement by OTC or 2-ME. We conclude that enhancement of intracellular GSH concentration results in an increased lymphocyte response to mitogen stimulation.  相似文献   

16.
When cultures of Escherichia coli B/r growing at various rates were exposed to ultraviolet light, mitomycin C, or nalidixic acid, deoxyribonucleic acid (DNA) synthesis stopped but cell division continued for at least 20 min. The chromosome configurations in the cells which divided were estimated by determining the rate of DNA synthesis during the division cycle. The cultures were pulse-labeled with (14)C-thymidine, and the amount of label incorporated into cells of different ages was found by measuring the radioactivity in cells born subsequent to the labeling period. The cells which divided in the absence of DNA synthesis were those which had completed a round of chromosome replication prior to the treatments. It was concluded that completion of a round of replication is a necessary and sufficient condition of DNA synthesis for cell division.  相似文献   

17.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

18.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

19.
The effects of ethylene on cell division are generally considered inhibitory. In this study, we demonstrate that transient ethylene exposure, while suppressing cytokinesis, stimulates DNA synthesis. We monitored DNA synthesis and cytokinesis in the epidermis of cucumber (Cucumis sativus) hypocotyls, an organ whose post-germination development involves strictly limited cell division. During exposure to ethylene, DNA synthesis, assessed by the incorporation of the thymidine homolog 5-bromo-2'-deoxyuridine, was detected in 20% of the epidermal cells, whereas DNA synthesis was nearly undetectable in normal air. Cytofluorometric analysis of nuclei in affected cells showed an up to 8-fold increase in DNA content. During this time, new cell plate formation was not detected. However, shortly after ethylene was removed, DNA content was rapidly restored to 2C (diploid) levels in all cells, and new cell plate formation dramatically increased. These results demonstrate that ethylene promotes DNA synthesis and its endoreduplication but inhibits cytokinesis, thereby maintaining some cells in G2 phase.  相似文献   

20.
The effects of aphidicolin, a specific inhibitor of DNA polymerase α, on cell growth, DNA synthesis and myogenic differentiation in the human alveolar rhabdomyosarcoma cell line KFR were studied. The treatment with aphidicolin at 5 × 10−6 M concentration, which completely inhibited DNA synthesis and cell growth, induced morphological differentiation of small mononuclear cells to elongated, multinucleated (myotube-like) structures. The morphological differentiation was accompanied by the expression of skeletal muscle myosin; about 30% myosin-positive cells were observed after 14 days of treatment, compared to 2.3% in untreated cultures. The results showed that aphidicolin induces differentiation of human rhabdomyosarcoma cells and that multinucleated myotube-like elements may develop simply by cell fusion without cell division and DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号