首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the fact that spontaneous tetraploidy is a rare phenomenon in mice, such embryos may be produced experimentally by a variety of means, though only a very limited degree of postimplantation development has been achieved. Despite this apparent limitation, much data on the rate of development of preimplantation tetraploid embryos has been published. However, the findings from these studies has often been conflicting. In the light of the recent successful achievement of advanced postimplantation tetraploid development in our laboratory, we decided it was an opportune time to re-evaluate the preimplantation development of these embryos in as near to optimal conditions as we could achieve. Three groups were studied, namely 1) control (diploid) embryos developing in vivo, 2) control (diploid) embryos that had been isolated at the 2-cell stage, briefly retained in culture, then transferred to the oviducts of pseudopregnant recipients, and 3) tetraploid embryos produced by electrofusion of blastomeres at the 2-cell stage, then transferred to the oviducts of pseudopregnant recipients. Embryos were isolated from females from each group at specific times after the HCG injection to induce ovulation. The total cell number of each embryo was established and the log mean values were plotted against time. From the gradients of the lines it was possible to establish that there was a significant difference between the cell doubling time of the transferred controls (group 2) compared to the in vivo controls (group 1) with cell doubling times of 15.86 +/- 1.45 h and 10.27 +/- 0.24 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
L Elbling  M Colot 《Mutation research》1985,147(1-2):23-28
Analysis of sister-chromatid exchange (SCE) has been shown to be a sensitive and reproducible method for detecting the action of mutagens and carcinogens. We have succeeded in establishing a reliable technique which allows to perform SCE in preimplantation embryos in order to make the pre-uterine stages of development accessible to routine detection of DNA damage. Using the mouse strain and technique described, approximately 30-40% of mice will mate successfully after synchronization and spontaneous ovulation. From 3 pregnant females, about 30 four- to eight-cell embryos will be obtained, representing one experimental group providing approximately 50-80 two-S-phase labelled metaphases with a SCE frequency baseline below 6 exchanges.  相似文献   

3.
Vitamin A palmitate, retinoic acid and an aromatic retinoic acid analogue (Ro 10-9359) induced sister-chromatid exchanges (SCE) in human diploid fibroblasts. The same SCE level was reached with the 3 compounds tested, when the concentration of vitamin A palmitate was 10 times higher than those of retinoic acid and Ro 10-9359. No correlation was found when the dose-related SCE induction of a retinoid was compared with the respective antineoplastic activity as reported by others.  相似文献   

4.
Mouse 2n (lacZ-) <--> 4n (lacZ+) aggregation chimeras were examined 5 or 10 days after uterine transfer to test the potential of 4n cells to contribute to embryonic tissues. Recovered embryos corresponded to embryonic day 7.5 approximately 8.0 and 12.5, respectively. Ten days after transfer, 4n cells were never detected, as reported earlier, in embryonic tissues of chimeras produced by the standard procedure in which one 2n embryo at the8-cell stage is aggregated with a4n embryo at the4-cell stage. However, beta-gal positive cells were present in embryonic tissues, though in a low number, in chimeras produced by a 2n and a 4n embryo at the 4-cell stage. Similar results were obtained when one 2n embryo atthe 8-cell stage was aggregated with two 4n embryos atthe 4-cell stage. beta-gal positive cells were found in the heart, liver, skin and intestinal epithelium. The majority of chimeras 5 days after uterine transfer retained beta-gal positive cells in embryonic tissues. The complete lack of 4n cell contribution to chimeras produced by the standard procedure is therefore attributed to the initial low proportion of 4n cells allocated to epiblast and their severe elimination from embryonic tissues.  相似文献   

5.
In several acute and chronic exposures to various chemicals in vivo and in vitro, the average sister-chromatid exchange (SCE) frequencies in human, mouse, rat, and rabbit lymphocytes generally decrease with time following treatment. The rate of this decline varies, but little data have been published pertaining to the comparative kinetics of SCEs both in vivo and in vivo/in vitro (exposure of animals to the test compound and culturing of cells) simultaneously in the same tissues. In this study, a single dose of cyclophosphamide (40 mg/kg) was injected for varying periods (6-48 h) and its effects, as assessed by the induction of SCEs, were analyzed under both in vivo and in vivo/in vitro conditions in mouse bone marrow and spleen cells. In vivo, the cyclophosphamide-induced SCEs increased with increasing time up to 12 h, stayed at approximately the same level until 24 h, and then decreased with increase in post-exposure time. However, the SCE levels remained significantly higher than controls at 48 h post-exposure time in both bone marrow and spleen cells. Under in vivo/in vitro conditions, the SCEs in bone marrow decreased with increase in post-exposure time until reaching control values by 48 h post exposure. However, in spleen cells, the decrease in SCE level was gradual, and by 48 h post-exposure time, the cells still had approximately 6 times higher SCEs than the control values. These results suggest that there are pharmacokinetic differences for cyclophosphamide in mouse bone marrow and spleen. Also, there is a differential SCE response to cyclophosphamide under in vivo and in vivo/in vitro conditions.  相似文献   

6.
Reliable estimation and improvement of the developmental potential of in vitro production (IVP) embryos requires functional criteria of embryo quality. Antiapoptotic and mitogenic effects of insulin-like growth factor I (IGF-I), applied during bovine IVP, were studied. Day 6.5 blastocysts were fixed and processed for TUNEL to detect apoptotic cells, for immunocytochemical detection of proliferating cell nuclear antigen (PCNA), and for propidium iodide (PI) staining to detect all nuclei. Laser scanning confocal microscopy was used to determine apoptotic (TUNEL/PI) and proliferative (PCNA/PI) indices. Addition of IGF-I to the culture but not to the maturation medium increased the morula/blastocyst yield (P = 0.03), but the cleavage rate was not affected. During culture, IGF-I significantly lowered the apoptotic index by decreasing the number of apoptotic cells per embryo and elevated the total cell number of the blastocysts. The frequency of blastocysts with apoptotic cells was not affected. IGF-I increased the proportion of blastocysts with apoptotic cells in the inner cell mass area only by reducing apoptosis in the trophectoderm area. The PCNA index was not affected by IGF-I. A positive correlation observed between apoptotic and PCNA-positive cells was significant in groups stimulated with IGF-I during in vitro culture. Of TUNEL-positive cells, 30%-40% per embryo were also positive for PCNA. This colocalization may indirectly suggest an activation of DNA repair process in TUNEL-positive cells in response to DNA fragmentation. IGF-I reduces apoptosis in bovine IVP embryos. The requirement of IGF-I is more critical during embryo culture than during oocyte maturation. Our data suggest that an assay for TUNEL in conjunction with cell proliferation analysis can provide useful information about the quality of IVP embryos.  相似文献   

7.
Some previous attempts to produce tetraploids experimentally have resulted in a proportion of treated embryos becoming 2n/4n mosaics at a frequency which may be as high as 20%, when using cytochalasin B as a fusigenic stimulus and cytogenetic techniques to identify putative tetraploid embryos. To investigate the possible occurrence of 4n/2n mosaicism, tetraploid embryos were produced by electrofusion, a process which allows adjacent blastomeres at the 2-cell stage to fuse following exposure to electric field pulses. Embryos used for electrofusion were hemizygous for a transgene consisting of approximately 1000 copies of the mouse beta-globin gene. After in situ hybridization, one hybridization signal is expected per diploid genome. Tetraploid cells in 7.5-, 8.5-, 9.5- and 10.5-day-old conceptuses were distinguished from diploid cells by performing in situ hybridization on histological sections. The frequency of nuclei with two hybridization signals in the 'hemizygous' tetraploid embryos was compared to diploid embryos which were either hemizygous or homozygous for the beta-globin transgene. Comparison of the frequency of nuclei with two hybridization signals between tissues of 'hemizygous' tetraploid conceptuses and homozygous diploid conceptuses showed no significant difference, which implies that the tissues in the tetraploid conceptuses were uniformly tetraploid. No evidence was found to suggest that electrofusion results in 2n/4n mosaicism.  相似文献   

8.
Exposure of preimplantation mouse embryos in culture to bromodeoxyuridine (BrdU) in the concentration range of 10(-9) to 2 x 10(-6) M allows sister-chromatid differentiation at the morula and blastocyst stage. The same BrdU concentrations induced no chromosomal aberrations, but a prolongation of the cell cycle and an increase of the SCE frequency. Even at the lowest BrdU concentration for sister-chromatid differentiation (10(-9) M the background level for SCE was found to be significantly higher in early embryos than in fetal or adult tissues of the mouse. Therefore, the high SCE frequency seems to be characteristic of undifferentiated embryonic cells. Methodological recommendations are also given for SCE assay in preimplantation mouse embryos.  相似文献   

9.
The lack of a paternal genome in parthenogenetic embryos clearly limits their postimplantation development, but apparently not their preimplantation development, since morphologically normal blastocysts can be formed. The cleavage rate of these embryos during the preimplantation period gives a better indication of the influence of their genetic constitution than blastocyst formation. Conflicting results from previous studies prompted us to use a more suitable method of following the development of haploid and diploid parthenogenetic embryos during this period. Two classes of parthenogenetic embryos were analysed following the activation of oocytes in vitro with 7% ethanol: 1) single pronuclear (haploid) embryos and 2) two pronuclear (diploid) embryos. Each group was then transferred separately during the afternoon to the oviducts of recipients on the 1st day of pseudopregnancy. Control (diploid) 1-cell fertilised embryos were isolated in the morning of finding a vaginal plug, and transferred to pseudopregnant recipients at approximately the same time of the day as the parthenogenones. Embryos were isolated at various times after the HCG injection to induce ovulation, from each of the three groups studied. Total cell counts were made of each embryo, and the log mean values were plotted against time. The gradient of the lines indicated that 1) the cell doubling time of the diploid parthenogenones was 12.25 +/- 0.34 h, and was not significantly different from the value obtained for the control group (12.74 +/- 1.17 h), and that 2) the cell doubling time of the haploid parthenogenones (15.25 +/- 0.99 h) was slower than that of the diploid parthenogenones and the control diploid group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The ability of preimplantation mouse embryos to utilize glucose oxidatively is controlled, in part at least, at the level of glycolysis. Various experimental observations are reviewed that indicate the regulatory mechanism in delayed implanting blastocysts involves the classic negative allosteric feedback of high levels of ATP on phosphofructokinase while the situation in 2-cell embryos appears to be more complicated. That is, in addition to the usual negative effect of ATP and citrate on phosphofructokinase, there appears to be a modification of hexokinase that prevents phosphorylation of adequate amounts of glucose and results in low levels of fructose-6-phosphate at the 2-cell stage and consequently there is a failure to release the inhibition of phosphofructokinase even if ATP and citrate levels decrease. Although both types of embryos have limited glycolytic activity, they do have adequate capacity for citric acid cycle activity and oxidative phosphorylation, and are able to maintain a high ATP : ADP. It is argued, therefore, that the reduced levels of macromolecular synthesis characteristic of 2-cell and delayed implanting blastocysts are not due to restricted energy substrates or regulatory controls on glycolysis and a subsequent low energy state. On the contrary, it seems that the reduction in oxidative utilization of glucose in these situations is a result of diminished energy demand because of the low level of synthetic activity. The potential significance of this relationship between energy production and utilization in terms of potential regulatory mechanisms in preimplantation embryos is discussed.  相似文献   

11.
12.
The production of mouse chimeras is a common step in the establishment of genetically modified animal strains. Chimeras also provide a powerful experimental tool for following cell behavior during both prenatal and postnatal development. This protocol outlines a simple and economical technique for the production of large numbers of mouse chimeras using traditional diploid morula<-->diploid embryonic stem (ES) cell aggregations. Additional steps are included to describe the procedures necessary to produce specialized tetraploid chimeras using tetraploid morula<-->diploid ES cell aggregations. This increasingly popular form of chimera produces embryos of nearly complete ES cell derivation that can be used to speed transgenic production or ask developmental questions. Using this protocol, mouse chimeras can be generated and transferred to pseudopregnant surrogate mothers in a 5-d period.  相似文献   

13.
14.
Fucosylated glycoconjugates in mouse preimplantation embryos   总被引:1,自引:0,他引:1  
Preimplantation mouse embryos were metabolically labelled with 3H or 14C-fucose to investigate the synthesis of fucosylated macromolecules. Scintillation counting revealed that there was a progressive increase in both total fucose taken up by the embryo and incorporation of fucose into TCA-precipitable material as embryos developed from the 4-cell to the blastocyst stage. This was reflected in the increasing intensity of bands on autoradiographs of radioactive fucose labelled proteins separated on 10% SDS-PAGs between the 4-cell embryo (at which stage bands were first detectable) and the blastocyst. Minor qualitative changes in fucoproteins were detected at the time of compaction and additional bands appeared at the blastocyst stage. Preliminary analysis of fucolipids in 6- to 8-cell embryos indicated that an approximately equal amount of fucose was incorporated into lipid and protein. Autoradiographs of semi-thin sections of 3H-fucose-labelled embryos showed substantial amounts of radioactive material in the vicinity of the plasma membrane both adjacent to other cells and facing the zona pellucida. These data would support a predominant role for fucoconjugates in cell surface events in the preimplantation embryo from the 8-cell stage.  相似文献   

15.
We have analysed Xist expression patterns in parthenogenetic and control fertilised preimplantation embryos by using RNA FISH. In normal XX embryos, maternally derived Xist alleles are repressed throughout preimplantation development. Paternal alleles are expressed as early as the 2-cell stage. In parthenogenetic embryos, we observed Xist RNA expression and accumulation from the morula stage onwards, indicating loss of maternal imprinting. In the majority of cells, expression was from a single allele, indicating that X chromosome counting occurs to establish appropriate monoallelic Xist expression. We discuss these data in the context of models for regulation of imprinted and random X inactivation.  相似文献   

16.
This report deals with alkaline phosphatase in preimplantation mouse embryos. The enzyme activity is cytochemically demonstrated by an azo dye coupling method and biochemically determined by measuring phosphate liberated from β-glycerophosphate. The cytochemical procedure reveals alkaline phosphatase beginning suddenly in late 4-cell embryos. With the biochemical procedure, in spite of the large samples used, no activity is detected until the 8-cell stage when the activity rises abruptly, though less abruptly than the cell number. These results, which suggest the initiation of enzyme activity, are discussed and compared with those obtained by the Gomori-Takamatsu method on the same material.  相似文献   

17.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   

18.
Summary Early (non-compacted) and late (compacted) 8-cell embryos were observed after few hours of culture in vitro. The former embryos underwent compaction and the latter embryos were found decompacted. Cell counting suggested that decompaction preceded fourth cleavage division of any blastomere and lasted until the blastomeres divided.About one third of mouse morulae, which had about twenty cells, were found non-compacted upon obtaining from females. After few hours of culture in vitro these embryos underwent recompaction and cavitation. Increasing the contributions of mitosis-arrested and cytokinesisarrested cells within the morulae by culture with nocodazole and cytochalasin B respectively, did not delay recompaction.The data show that periods of decompaction and recompaction alternate in preimplantation development.  相似文献   

19.
Plant lectins were used to monitor qualitative changes in carbohydrate-containing receptors during preimplantation mouse development. Beginning at the morula stage, an age-related decline was observed in agglutination of early mouse embryos by concanavalin A (ConA). In contrast, wheat germ agglutinin (WGA) and Ricinus communis agglutinin (RCA) agglutinated embryos strongly throughout preimplantation development.  相似文献   

20.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号