首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated concentration-dependent primary and secondary substrate relationships in the simultaneous metabolism of the ubiquitous pollutant phenol and the naturally occurring substrate acetate by a Pseudomonas sp. soil isolate capable of utilizing either substance as a sole source of carbon and energy. In addition to conventional analytical techniques, solid-state 13C nuclear magnetic resonance spectroscopy was used to follow the cellular distribution of [1-13C]acetate in the presence of unlabeled phenol. With 5 mM acetate as the primary substrate, Pseudomonas sp. 9S8D2 removed 1 mM phenol (secondary substrate) at a rate of 2 nmol/mg of total cell protein. Although extensive acetate metabolism was indicated by a significant redistribution of the carboxyl label, this redistribution was not affected by the presence of phenol as a secondary substrate. When the primary and secondary substrate roles were reversed, however, the presence of 1 mM phenol altered the metabolism of 0.1 mM acetate, as evidenced by both the two- to fourfold increases in carboxyl label that appeared in terminal methyl and acyl chain methylene carbon resonances and the decrease in label that occurred in the carbohydrate spectral region. These results suggest that, when phenol is present as the primary substrate, acetate is preferentially shuttled into fatty acyl chain synthesis, whereas phenol carbon is funnelled into the tricarboxylic acid cycle. Thus, simultaneous use of a xenobiotic compound and a natural substrate apparently does occur, and the relative concentrations of the two substrates do influence the rate and manner in which the compounds are utilized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
Summary Evidence is presented from a preliminary study showing that C-13 N.M.R. spectroscopy is a useful new tool for the elucidation of the structure of soil organic matter.  相似文献   

5.
C. Wang  Q. Teng    T. A. Cross 《Biophysical journal》1992,61(6):1550-1556
High resolution structural elucidation of macromolecular structure by solid-state nuclear magnetic resonance requires the preparation of uniformly aligned samples that are isotopically labeled. In addition, to use the chemical shift interaction as a high resolution constraint requires an in situ tensor characterization for each site of interest. For 13C in the peptide backbone, this characterization is complicated by the presence of dipolar coupled 14N from the peptide bond. Here the 13C1-Gly2 site in gramicidin A is studied both as a dry powder and in a fully hydrated lipid bilayer environment. Linewidths reported for the oriented samples are a factor of five narrower than those reported elsewhere, and previous misinterpretations of the linewidths are corrected. The observed frequency from oriented samples is shown to be consistent with the recently determined structure for this site in the gramicidin backbone. It is also shown that, whereas a dipolar coupling between 13C and 14N is apparent in dry preparations of the polypeptide, in a hydrated bilayer the dipolar coupling is absent, presumably due to a `self-decoupling' mechanism.  相似文献   

6.
The administration of cadmium (1.25 mg as Cd2+/kg, ip.) to male rats resulted in a significant increase of hepatic and renal ornithine decarboxylase activity. The maximum increase of ornithine decarboxylase activity to about 10-fold of the controls was seen at 4 hr after the administration of cadmium, and the increased enzyme activity was returned to control levels by 12 hr. Cadmium produced somewhat dose-dependently the increase of ornithine decarboxylase activity. The increase of ornithine decarboxylase seen on the administration of cadmium was cancelled by pretreatment of rats with cycloheximide. The treatment of female rats with cadmium also caused the increase of hepatic ornithine decarboxylase activity, but not renal enzyme activity.  相似文献   

7.
8.
Kreb's tricarboxylic (TCA) cycle was studied in Halobacterium salinarum cells grown in the presence of glucose or alanine. The cells were incubated with 13C-labeled substrate and the labeling pattern of various carbon positions in glutamate was monitored by 13C-NMR spectroscopy. [2-13C]pyruvate, when used as a substrate, led mainly to signals for C-1 and C-5 glutamate, with some C-3 glutamate. [3-13C]pyruvate as a substrate produced signals, mainly C-2, C-3, and C-4 glutamate, with some C-1 and C-5 glutamate. The multiplicity of the signals and observation of a C-1 signal in this case indicates extensive cycling of the label in the TCA cycle. Isotopomer analysis of glutamate labeling suggested that of the total pyruvate entering the TCA cycle, the flux through pyruvate:ferredoxin oxidoreductase was 90% while that through pyruvate caboxylase was 10%. Only 53% of the total acetyl-CoA was produced from the added labeled pyruvate, the rest being generated endogenously. In the presence of nitrogen, mainly transamination reaction products were formed in the case of both these substrates. Received: November 26, 1997 / Accepted: May 11, 1998  相似文献   

9.
Horse heart cytochrome c has been carboxymethylated under various reaction conditions using [2-13C]bromoacetate. Direct analysis of reaction products using 13C nuclear magnetic resonance spectroscopy shows that the protein can be much more extensively modified than has previously been assumed. The proximity of one carboxymethylmethionine residue to the paramagnetic center of the ferric protein allows it to be distinguished from a more constant carboxymethylmethionine residue on the basis of the chemical shift of its labeled methylene group. Refolding of cytochrome c after alkylation at low pH apparently gives a different configuration of modified methionine residues within the protein compared to that produced by alkylation at neutral pH in the presence of cyanide.  相似文献   

10.
11.
31P and 13C nuclear magnetic resonance (NMR) experiments were performed on suspensions of the phototrophic bacterium Chromatium vinosum incubated anaerobically in the dark. 31P NMR spectra revealed that during prolonged dark incubation high ATP levels are maintained. This phenomenon was independent of the presence of the energy reserves polyglucose and polyphosphate. 13C NMR experiments revealed that the amino acids glutamate, aspartate, and alanine are the major products of acetate incorporation in the dark. Apart from these amino acids, poly-beta-hydroxybutyrate was also formed. Acetate metabolism was markedly stimulated by the presence of polyglucose. The specific 13C activity of glutamate C-2 was approximately 50% that of glutamate C-4. The idea is discussed that this difference is the consequence of the maintenance of redox balance during entry of acetate into cell metabolism.  相似文献   

12.
13C nuclear magnetic resonance spectroscopy was used to study the metabolism of [2-13C]pyruvate in intact cells of Halobacterium salinarium. The spectra of these cells show that pyruvate is reduced to lactic acid and transaminated to alanine. The intensity of C-2 lactate is higher under anaerobic conditions than under aerobic conditions. When cells are grown in the absence of glucose, the level of C-2 lactate intensity is lower. In extracts of these cells, the level of NADH-dependent lactate dehydrogenase activity is lower than that of cells grown in the presence of glucose. A C-5 glutamate resonance suggests the entry of pyruvate into the tricarboxylic acid cycle through acetyl-coenzyme A. In addition, the label is also observed at C-3 and C-4 of glutamate, signifying a pyruvate carboxylase-type reaction and scrambling of label at the fumarate-succinate stage plus malic enzyme operation, respectively. Citrate synthase and malic enzyme activity appear to be controlled by the growth conditions of H. salinarium.  相似文献   

13.
The 13C NMR spectra of 15 flavonoid and 9 isoflavonoid substances of various ring C oxidiation states were analyzed and their carbon shifts assigned. In the case of 3 terpenic flavones and two glycoflavones linewidths were related qualitatively to molecular segmental motion.  相似文献   

14.
15.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the 'core' oligosaccharide region. The spectral signals for various ortho- and pyrophosphoric esters were observed. All phosphate groups appeared to be monoesterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

16.
A 13C nuclear magnetic resonance study of a mouse anti-dansyl monoclonal antibody is reported. The antibody molecule was specifically labeled with [1-13C]methionine by growing hybridoma cells in serum-free medium. It was possible to observe all the carbonyl carbon resonances of the antibody. Fab and Fc fragments have been obtained from the antibody and used successfully for the assignment of each of the carbonyl resonances to either the Fab or Fc region. It has been shown that the spectrum of the intact antibody is simply those of Fab and Fc superimposed. It has also been shown that site specific assignments of carbonyl resonances can be made by means of a double labeling technique developed by Kainosho and coworkers.  相似文献   

17.
The adaptation of Neurospora crassa mycelium to growth on acetate as the sole carbon source was examined by using 13C nuclear magnetic resonance. Extracts were examined by nuclear magnetic resonance at various times after transfer of the mycelium from medium containing sucrose to medium containing [2-13C]acetate as the sole carbon source. The label was initially seen to enter the alanine, glutamate, and glutamine pools, and after 6 h 13C-enriched trehalose was evident, indicating that gluconeogenesis was occurring. Analysis of the isotopomer ratios in the alanine and glutamate-glutamine pools indicated that substantial glyoxylate cycle activity became evident between 2 and 4 h after transfer. Immediately after transfer of the mycelium to acetate medium, the alanine pool increased to about four times its previous level, only a small fraction of which was enriched with 13C. The quantity of 13C-enriched alanine remained almost constant between 2 and 7.5 h after the transfer, whereas the overall alanine pool decreased to its original level. The selective catabolism of the unenriched alanine leads us to suggest that the alanine pool is partitioned into two compartments during adaptation. Two acetate-nonutilizing mutants were also studied by this technique. An acu-3 strain, deficient for isocitrate lyase (EC 4.1.3.1) activity, showed metabolic changes consistent with this lesion. An acp strain, previously thought to be deficient in an inducible acetate permease, took up [2-13C]acetate but showed no evidence of glyoxylate cycle activity despite synthesizing the necessary enzymes; the lesion was therefore reinterpreted.  相似文献   

18.
19.
20.
Spin lattice relaxation times (T1) and apparent spin-spin relaxation times (T2) derived from linewidth have been used to investigate model membranes composed of egg yolk phosphatidylcholine. T1 measurements appear to be largely dominated by segmental motion and as a consequence are not very sensitive to small changes in membrane structure. On the contrary, apparent T2 times are shown to be sensitive to such changes in the membrane and are thus suggested as a useful tool for further investigation of membrane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号