首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.  相似文献   

2.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity.  相似文献   

3.
Despite its relevance for the persistence of populations, the ecological mechanisms underlying habitat use decisions of juvenile birds are poorly understood. We examined postfledging habitat selection of radio-tracked juvenile middle spotted woodpeckers Dendrocopos medius at multiple hierarchically-nested spatial scales in NW Spain. At the landscape and home range scales, old oak forest was the most used and selected habitat, young oak forests and pine plantations were avoided, and riverside forests were used as available. At a lower scale, birds selected larger diameter trees for foraging. Home ranges had higher densities of large deciduous trees (mainly oaks Quercus spp., but also poplars Populus spp. and willows Salix spp. >22  cm and >33  cm DBH) selected for foraging by juveniles than non-used areas. These results suggest that foraging conditions may drive, at least partly, habitat use decisions by juvenile birds. We also discuss the potential influence of intraspecific competition, the search for a future breeding territory in the early postfledging period and predation avoidance on habitat use decisions by juvenile birds. Contrary to previous studies on migrant forest birds, postfledging juvenile woodpeckers selected the same habitat as for the breeding adults (i.e. old oak forest), indicating that migrant and resident specialist avian species may require different conservation actions. Conservation strategies of woodpecker populations should consider the protection of old oak forests with high densities of large trees to provide suitable habitat to breeding adults and postfledging juveniles. The habitat improvement for this indicator and umbrella species would also favour other organisms that depend on characteristics of old-growth oak forests.  相似文献   

4.
普氏蹄蝠(Hipposideros pratti)回声定位声波、形态及捕食策略   总被引:7,自引:0,他引:7  
研究了普氏蹄蝠(Hipposideros pratti)不同状态(飞行,悬挂)下的回声定位声波特征,形态特征和生态特征(捕食策略,捕食地和食物类型)。结果表明,普氏蹄蝠的回声定位声波为CF-FM型,在不同状态下,主频率有一定的差异,飞行状态的主频率略低于悬挂状态,表明普氏蹄蝠是利用多谱勒补偿效应来适应飞行速度引起的主频率变化,以进行准确的定位和有效的捕食;同时飞行状态下声脉冲时间,声脉冲间隔时间及FM带宽略低于悬挂状态,而声脉冲重复率和能率环略主于悬挂状态,表明普氏蹄蝠在不同状态下利用不同特征的声波进行捕食,由回声定位声波推断和野外观察可知,普氏蹄蝠可能在树冠周围以盘旋方式(在昆虫高峰期)或以捕蝇器式(在昆虫高峰期这后)捕食中等偏大的振翅昆虫(如甲虫)。  相似文献   

5.
White fronted bee-eaters (Merops bullockoides) live in extended family clans that aggregate to roost and nest in large colonies. Members of a given clan also share a common foraging territory, spatially segregated from the colony, to which they commute daily. The size of this foraging territory is positively related to clan size. Clan foraging territories are divided into a number of loosely overlapping foraging home ranges (FHRs), each occupied by an individual or mated pair of birds. Bee-eaters feed solitarily, flycatching to snap up large insects from widely dispersed perches. Each bird tolerates intrusion on its FHR by various members of its own clan, but aggressively excludes individuals belonging to other clans. Birds defend only their own FHR; however, because of the high amount of FHR overlap, the result is a loose form of group defense of the larger clan feeding area. For this reason we refer to the system as one of clan foraging territories. Birds occupying clan foraging territories located more than 1.5 to 2 km from a colony temporarily abandoned them while feeding nestlings. At such times, these birds provisioned their young by foraging near the colony. Birds that abandoned territories foraged less efficiently, provisioned nestlings at a lower rate, and had lower breeding success than did birds that continued use of their foraging territories. A model is developed relating territory abandonment to the energetics of central place foraging. Bee-eaters typically shift colony locations between successive breeding seasons. Foraging territory locations, in contrast, remain largely stable, resulting in large and unpredictable changes in the quality of any given foraging territory across years (quality being defined as distance from the currently active nesting colony). When a pair bond forms in bee-eaters, one member typically remains in its natal clan while the other moves into the clan of its partner. At this time, the new pair also establishes its own FHR, generally located within or on the periphery of the clan foraging territory of the natal member. The result of this settlement pattern is that white fronted bee-eaters live their lives spatially surrounded by members of their natal or their matrimonial clan. This, in turn, increases the likelihood of both mutualistic and nepotistic interactions among clan members. Such benefits include shared territory defense, enhanced security against predation, and maintenance of close social bonds with potential helpers. We hypothesize that the adaptive value of clan foraging territories lies in long-term familiarity with a foraging area. Such familiarity was demonstrated to lead to improved foraging efficiency and hypothesized to provide both increased security from predation and a more accurate means of monitoring temporal changes in environmental quality. The system of clan foraging territories found in white fronted bee-eaters differs from the all-purpose group territories of most other cooperative breeders studied to date in two important ways. First, foraging territories were not limiting in the sense of restricting dispersal and “forcing” offspring to remain with their natal clans. Unoccupied areas of seemingly suitable habitat were present throughout the study area at all times. Birds also showed no tendency to expand their boundaries or move into areas vacated when neighboring clans decreased in size or died off. Second, breeding status and foraging territory ownership are not linked in Merops bullockoides. All pairs defended foraging areas, yet only about 3/4 of them bred in any given year. This percentage did not differ significantly between pairs occupying high quality foraging territories (located near the active nesting colony) and pairs forced to abandon low quality foraging territories located more distantly. We conclude that foraging territories are not a critical ecological constraining factor for white fronted bee-eaters in Kenya.  相似文献   

6.
1. We contrast the value of four different models to predict variation in territory size as follows: resource density (the ideal free distribution), population density, group size and intruder pressure (relative resource-holding potential). In the framework of the resource dispersion hypothesis, we test the effect of resource abundance and spatial variation in resource distribution on the age/sex composition of social groups. 2. We explore these drivers of territory size and group size/composition in Ethiopian wolves Canis simensis in the Bale Mountains, Ethiopia, using fine-scale distribution maps of their major prey species based on satellite-derived vegetation maps. 3. The number of adult males is correlated with territory size, while prey density, wolf population density and intruder pressure are not associated with territory size. On average, each additional adult male increases territory size by 1.18 km(2). 4. Prey abundance increases with territory size (average biomass accumulation of 6.5 kg km(-2)), and larger territories provide greater per capita access to prime foraging habitat and prey. 5. The age/sex composition of wolf packs is more closely related to territory quality than territory size. Subordinate adult females are more likely to be present in territories with greater proportions of prime giant molerat Tachyoryctes macrocephalus habitat (i.e. >80% of Web Valley territories and >20% in Sanetti/Morebawa), and more yearlings (aged 12-23 months) occur in territories with greater overall prey biomass. 6. Wolf packs with restricted access to good foraging habitat tend to defend more exclusive territories, having a lower degree of overlap with neighbouring packs. 7. The greater per capita access to prey in large groups suggests a strong evolutionary advantage of collaborative territorial defence in this species, although the relative costs of territorial expansion vs. exclusion depend upon the spatial distribution of resources. We propose a model whereby territory size is determined by the number of adult males, with the presence of subordinate females and yearlings dependent on the quality of habitat, and the abundance and distribution of prey, incorporated within territory boundaries.  相似文献   

7.
Capsule Population trends for Chaffinch on farmland are unlikely to be explained by their preference for non-crop habitats alone.

Aims To investigate the importance of non-cropped habitats for Chaffinch territory distribution, breeding success and foraging habitat selection in Scottish farmland.

Methods Territory distribution, nesting success and foraging behaviour of adults feeding chicks at the nest were recorded and related to habitat composition on two Scottish lowland farms.

Results Higher Chaffinch territory densities were associated with the presence of hedgerows, trees and grass leys, whereas lower densities were found adjacent to winter Barley. Nests were predominantly located in conifer trees and hedgerows. Trees were selected preferentially for foraging. Poor breeding success was detected in nests associated with cereal crops and wider field margins. Farmland in Scotland supported much lower territory densities than in England.

Conclusion Chaffinches rely predominantly on non-cropped habitats for territory establishment, nesting and foraging habitats. Differences in habitat composition between England and Scotland may explain differences in territory densities. However, the Chaffinch's preference for non-crop habitats is unlikely to explain its population trends alone. Immigration from other habitats and/or a decrease in inter-specific competition for resources may also have contributed to the increase in the national farmland Chaffinch population.  相似文献   

8.
For many territorial hummingbirds, habitat use is influenced primarily by the interaction between resource acquisition and non-foraging behaviors such as territory advertisement and defense. Previous research has highlighted the importance of foraging-associated habitat features like resource density and distribution in determining the space-use patterns of hummingbirds. Less is known, however, about how habitat selection associated with non-foraging behaviors influences space use by territorial species. We used radio telemetry to examine patterns of territorial space use by Shining Sunbeams (Aglaeactis cupripennis) in high Andean montane forests near Manu National Park, Peru, and Bosque Comunal “El Carmen” near Chordeleg, Ecuador. We quantified within-territory habitat characteristics related to resource acquisition and non-foraging behaviors such as territory advertisement and defense. We found that Shining Sunbeams showed high use of core areas in territories where foraging effort was relatively low. We found no relationship, however, between the position of core areas and habitat characteristics associated with territory defense, predator avoidance, or other non-foraging behaviors. We also found no relationship between use of non-core areas and habitat use based on resource acquisition. Thus, patterns of territorial space use by Shining Sunbeams may be characterized by core areas not determined by foraging behavior. Further studies examining territorial behaviors and the influence of intrusion pressure will help identify the underlying determinants of territory space use by this and other species of Andean hummingbirds.  相似文献   

9.
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the ‘central place’ and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour.  相似文献   

10.
The results of virology inspection of the wild birds living in territory of the Western Mongolia, carried out in 2003-2004 are presented. For the specified period influenza viruses H3 and H4 subtype hemagglutinins are isolated from birds. It is revealed taxonomic and ecological heterogeneity of the birds involved in maintenance of circulation of influenza viruses in the given territory. Influenza viruses are isolated from birds of 5 special groups; among them there are preferring water and nearwater biotops, a species preferring dry plain region, and also a species which habitat does not depend from water's territories.  相似文献   

11.
In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation‐forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185‐km2) complex conifer plantation landscape in 2009 and 2010. Home‐range 95% kernels for females, paired males and unpaired males were an order of magnitude larger than song territories of paired males, emphasizing the importance of habitats beyond the song territory. Nightjars travelled a mean maximum distance of 747 m from the territory centre each night. Home‐range placement relative to landscape composition was examined by compositional analysis. Pre‐closure canopy forest (aged 5–10 years) was selected at all scales (MCP, 95% and 50% kernels), with newly planted forest (aged 0–4 years) also selected within 50% kernels. For telemetry fixes relative to habitat composition within 2 km of their territory centre, individuals again selected pre‐closure and newly planted forest, and also grazed grass heath. Open ungrazed habitat was not selected, with implications for open habitat planning for biodiversity conservation within public‐owned forests. Despite the Nightjars’ selection for younger growth, moth biomass was greater in older forest stands, suggesting that foraging site selection reflects ease of prey capture rather than prey abundance. Within large plantation‐forest landscapes, a variety of growth stages is important for this species and our results suggest that grazing of open habitats within and adjacent to forest will additionally benefit the European Nightjar.  相似文献   

12.
For migrant birds, which habitats are suitable during the non‐breeding season influences habitat availability, population resilience to habitat loss, and ultimately survival. Consequently, habitat preferences during winter and whether habitat segregation according to age and sex occurs directly influences migration ecology, survival and breeding success. We tested the fine‐scale habitat preferences of a declining Palearctic migrant, the whinchat Saxicola rubetra, on its wintering grounds in west Africa. We explored the influence of habitat at the territory‐scale and whether dominance‐based habitat occupancy occurs by describing the variation in habitat characteristics across wintering territories, the degree of habitat change within territories held throughout winter, and whether habitat characteristics influenced territory size and space‐use within territories or differed with age and sex. Habitat characteristics varied substantially across territories and birds maintained the same territories even though habitat changed significantly throughout winter. We found no evidence of dominance‐based habitat occupancy; instead, territories were smaller if they contained more perching shrubs or maize crops, and areas with more perching shrubs were used more often within territories, likely because perches are important for foraging and territory defence. Our findings suggest that whinchats have non‐specialised habitat requirements within their wintering habitat of open savannah and farmland, and respond to habitat variation by adjusting territory size and space‐use within their territories instead of competing with conspecifics. Whinchats show a tolerance for human‐modified habitats and results support previous findings that some crop types may provide high‐quality wintering habitat by increasing perch density and foraging opportunities. By having non‐specialised requirements within broad winter habitat types, migrants are likely to be flexible to changing wintering conditions in Africa, both within and across winters, so possibly engendering some resilience to the rapid anthropogenic habitat degradation occurring throughout their wintering range.  相似文献   

13.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

14.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

15.
Although the affinity to the matrix habitat (matrix affinity) determines the fate of species in dynamic landscapes where habitat replacement occurs, only a few studies have examined which ecological traits are associated with matrix affinity. Here, we examined the associations of five ecological traits (i.e., fertility, body weight, migratory behavior, foraging height, and nesting height) with affinity for forest birds to a novel larch plantation matrix habitat. We surveyed the occurrence of birds in larch plantations (matrix habitat) and original deciduous forests (original habitat) in the winter and the breeding season, in a montane region of Nagano prefecture, central Japan. We treated occurrences in the matrix habitat relative to the original habitat as the matrix affinity of each species and examined the associations of ecological traits with matrix affinity, controlling for the relatedness of species. Fertile, resident, and low-nesting species showed high matrix affinity, while an association with body weight was not supported. The associations of foraging groups with matrix affinity were complex. While early successional species showed high matrix affinity, flycatchers had low matrix affinity. The matrix affinity of some foraging groups was greater in the winter than in the breeding season. Based on the results, we predicted that low fertility and migratory, high-nesting species would be sensitive to habitat replacement due to matrix hostility. These predictions may be applicable to other matrix type, region, and taxa.  相似文献   

16.
This paper reviews the ecological advantages and disadvantages of very small body size inSorex Linnaeus, 1758 shrews living at high latitudes with cold winters. It examines the feeding and foraging habits of small and large shrews in the context of prey supply, location of winter prey sources, territory requirements, habitat exploitation and inter-specific competition. Data on feeding habits and prey availability show that the major costs of small size are a reduction in food niche breadth and prey biomass resulting from restrictions on the type and size of prey eaten, and large territory requirements. Major benefits of small size are the ability to subsist on small, numerous and accessible arthropods with high encounter rates, enabling coexistence with larger congeners and exploitation of low-productivity habitats less suitable for larger earthworm-eating species. Small size, coupled with low per capita food intake, is shown to be of special adaptive value in cold winters when food supply is restricted mostly to small arthropods, and earthworms are few.  相似文献   

17.
Habitat restoration projects are often deemed successful based on the presence of the target species within the habitat; however, in some cases the restored habitat acts as an ecological trap and does not help to improve the reproductive success of the target species. Understanding wildlife–habitat relationships through precise measurements of animal behavior can identify critical resources that contribute to high quality habitat and improve habitat restoration practice. We evaluated the success of a restored piping plover (Charadrius melodus) breeding habitat in New Jersey, USA. We identified the major factors influencing foraging rates, compared foraging activity budgets over 3 yr at restored and natural habitats, and explored the potential of artificial tidal ponds as a viable restoration alternative. Adult foraging rates were higher in artificial pond and ephemeral pool habitats, during low tide, and after breeding activity ended. Adult foraging rates were impeded by the presence of people and vehicles within 50 m. Chick foraging rates were highest at artificial ponds and bay shores and lowest in dunes and on sand flats. Chick foraging rates were strongly hindered by the presence of corvids and the number of people within 50 m. In addition, at artificial tidal ponds, piping plovers spent more time foraging and less time engaged in defensive behaviors (vigilance, crouching, and fleeing) compared to other potential habitats. Our findings support the hypothesis that artificial tidal ponds are a valuable, perhaps superior, foraging habitat. Future beach restoration projects should include this feature to maximize habitat quality and restoration success. © 2011 The Wildlife Society.  相似文献   

18.
We investigated patterns of habitat segregation and morphological differentiation in syntopic, closely related turdid birds of the alpine zone of the Central Himalayas. Discriminant function analysis of 19 habitat structure parameters and comparisons of additional habitat features revealed that the species were distributed along gradients of vegetation height and vegetation density. In addition, non-vegetational structural habitat features, like microrelief variability or the presence of rocks and boulders, had strong discriminating power. In terms of habitat preferences the species of the guild investigated formed three subsets: shrubbery species (Erithacus pectoralis, E. chrysaeus and Hodgsonius phoenicuroides), species preferring open areas with higher surface roughness (Phoenicurus frontalis, Chaimarrornis leucocephalus) and the high-altitude species Grandala coelicolor. Using discriminant function analysis of 20 characters, morphology was analysed in relation to microhabitat utilization and foraging behaviour. Species inhabiting patches of shrubby thickets and foraging mainly by pedal movements (E. pectoralis, E. chrysaeus and H. phoenicuroides) have in common short rounded wings with high wing loading and strong legs and feet. Species preferably foraging by aerial hawking or perch and pounce techniques in more open areas (P. frontalis, C. chaimarrornis, and to some extent E. cyanurus) have longer wings, shorter tarsi and long rictal bristles. Grandala proved to be well adpated for long-distance flights at high altitudes (long, pointed wings) and for pedal foraging. Overall our results fit the basic assumption of ecomorphological theory that morphological distance reflects ecological distance. The ordination of each species in morphological space closely matched its distribution in ecological space (microhabitat, foraging strategies). Striking associations of morphology with ecology were not only evident for single traits but were also found in multidimensional comparisons: between-species Euclidian distances in ecology calculated from 19 habitat properties were in most cases equivalent to morphological distances calculated from 20 traits. In addition, in one of the two study areas species locations in the plane spanned by DFA axes of habitat use mirrored their positions in the morphological multivariate space. The observed distributions of the species in ecological and morphological space are interpreted as being mainly attributable to individualistic responses to the specific constraints of the alpine environment.  相似文献   

19.
We evaluated habitat selection by European beaver Castor fiber L. across a spatial gradient from local (within the family territory) to a broad, ecoregional scale. Based on aerial photography, we assessed the habitat composition of 150 beaver territories along the main water bodies of the Vistula River delta (northern Poland) and compared these data with 183 randomly selected sites not occupied by the species. The beavers preferred habitats with high availability of woody plants, including shrubs, and avoided anthropogenically modified habitats, such as arable lands. Within a single family territory, we observed decreasing woody plant cover with increasing distance from a colony centre, which suggests that beaver habitat preferences depend on the assessment of both the abundance and spatial distribution of preferred habitat elements. We tested the importance of spatial scale in beaver habitat selection with principal coordinates of neighbour matrices analysis, which showed that the geographical scale explained 46.7% of the variation in habitat composition, while the local beaver density explained only 10.3% of this variability. We found two main spatial gradients that were related to the broad spatial scale: first, the most important gradient was related to the largest distances between beaver sites and was independent of woody plant cover and the local beaver site density. The second most important gradient appeared more locally and was associated with these variables. Our results indicate that European beaver habitat selection was affected by different scale‐related phenomena related 1) to central place foraging behaviour, which resulted in the clumped distribution of woody plants within the territory, and 2) local population density and woody plant cover. Finally, 3) habitat selection occurs independently across the largest spatial scale studied (e.g. between watersheds), which was probably due to the limited natal dispersal range of the animals.  相似文献   

20.
Åke  BERG 《Ibis》1992,134(4):355-360
Territory establishment and habitat use by breeding Curlews Numenius arquata were studied during 1987 and 1988 on mosaic farmland (dominated by dry tillage) at two sites in central Sweden. Curlews preferred to breed in areas with a high proportion of grassland, close to rivers, while dry tillage was avoided. Territories at my study site were larger (mean = 4 5.2 ha) than in areas consisting entirely of grassland. Territory size seemed to depend on the spatial distribution of grasslands, which suggests that habitat fragmentation forces Curlews to establish larger territories in modern farmland than in areas of grassland. The number of territories in patches of grassland was correlated with patch area, and unoccupied patches were more isolated than occupied patches. However, patch area was a more important factor than isolation, since large patches (> 3 5 ha) were always occupied. Sown grassland was used significantly more than expected for foraging early in the season, possibly indicating the strong influence of the nutritional requirements in the pre-breeding period on territory establishment. Habitat selection when foraging seemed to be less important late in the season, since there was no significant habitat preference then. During this period distance to the nest site seemed to be more important than habitat, sinced the preferred foraging fields (including fields of all habitats used more than expected by area) were situated closer to nests than the less preferred fields, probably an adaptation to the high nest predation risk. The same fields were mostly preferred in the pre-breeding period also, suggesting that nests were built close to good foraging areas.
My results indicate that the decline of the Swedish Curlew population since 1950 is caused by changes in land use, resulting in decreased grassland area and increased habitat fragmentation, which probably have affected both breeding and foraging possibilities negatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号