共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to investigate the role of kinaesthetic feedback in the control of goal-directed movements. The subjects were qualified basketball and handball players compared to weightlifters as controls. The body measures and the general motor tests verified fit physical condition of the subjects, and detected no sign that would disturb the execution of special motor tests. The special motor tests were free-throw shootings with basketball to the basket, free shootings with handball to a rectangular frame, zigzag dribbling with basketball to 14 m among traffic cones 2 m apart, and stopping at a mark after running to 10 m. These tests were performed both with open eyes and closed eyes. The results of all special motor tests decreased significantly in the lack of visual information. Furthermore, in contrast to the significantly different results obtained from the three different groups with open eyes, these groups produced equally minor results with closed eyes. It is concluded that the practice of goal-directed movement, learned under visual guidance, does not make the kinaesthetic feedback able to compensate the lack of visual input. 相似文献
2.
3.
4.
5.
6.
7.
8.
Pressová M Liboska R Budesínský M Králíková S Kavenová I Rosenberg I 《Nucleosides, nucleotides & nucleic acids》2003,22(5-8):1049-1052
This work deals with isopolar, phosphonate-based nucleotide analogues containing a bridging P-C bond instead of the ester P-O linkage. Specifically, starting from activated derivatives 1, 2, and 3, a simple process for preparation of mixtures of short oligomers and their analyses were elaborated. 相似文献
9.
10.
Field Laurence H. 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1974,92(4):415-441
Journal of Comparative Physiology A - 相似文献
11.
12.
13.
Wells WA 《Trends in cell biology》1996,6(6):228-234
Checkpoints reduce the frequency of errors in cell division by delaying the progress of the cell cycle until certain processes are complete. The spindle-assembly checkpoint prevents the onset of anaphase until a bipolar spindle is present and all chromosomes are attached to the spindle. Evidence from yeast and mammalian cells suggests that kinetochores are at least one source of the signal that stops the cell cycle. Recent studies in budding yeast have begun to define the signal-transduction pathway involved in the spindle-assembly checkpoint, but details of the endpoint of the pathway, where these signals interact with the cell-cycle machinery, remain to be characterized. 相似文献
14.
15.
This study investigates the role of the human central nervous system (CNS) in the control of fast goaldirected movements. The main problem is that the latencies inherent in the transmission of physiological signals cause a delayed feedback of sensory information. Therefore, the muscle command signals cannot be explained by a simple servo-loop, so a more sophisticated control structure is required. Our hypothesis is that the CNS employs an internal representation of the controlled system in order to circumvent the drawbacks of the physiological loop delay. To test this hypothesis a mathematical model based on an internal representation and an internal state feedback has been developed. Computer simulations of double-step stimuli (control behaviour), tendon vibration and torque disturbances (disturbance behaviour) and load perturbations (adaptation behaviour) proved to agree remarkably well with experimental observations. The proposed control model can explain the open-loop and closed-loop aspects of human motor control. Hence, the use of an internal representation in generating the muscle command signals is very plausible. 相似文献
16.
Medaka is an ideal model system for developmental studies as it combines the advantages of powerful genetics and classical embryology. Due to the accessibility, transparency and fast development, embryogenesis and morphogenesis can be followed in vivo. Microscopic time-lapse imaging, however, requires the immobilization of the object to be observed. In medaka rhythmical contractile movements of the blastoderm during early development hampered time-lapse studies, as they cause the embryo to rotate vividly. Here we show that the contractile movements can be reduced by continuous treatment with the gap-junction uncoupling agent n-heptanol up to the 12-somite stage (stage 23) without interfering with development. This allows for the first time to perform high-resolution time-lapse studies in medaka. 相似文献
17.
Michael Milford Ruth Schulz 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1655)
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why. 相似文献
18.
We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect. 相似文献
19.
E T Petrenko 《Biofizika》1986,31(4):722-723
Influence of photostimulation upon the man's movements biomechanics (stabilogram, goniogram, electromiogram etc) according to the one-leg toe balance model was investigated on 500 persons. Lowering of the exercise biomechanical efficiency at the background of light gleams was established. Light gleams with the frequency of 8-12 Hz which violated movement control processes (the correction of the body GWC) had maximal confusing effect. 相似文献