首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of gramicidin S (GS), an antibiotic, on the rat heart membrane ATPases and contractile activity of the right ventricle strips were investigated. GS inhibited sarcolemmal Ca2+-stimulated ATPase (IC50 = 3 microM), Ca2+/Mg2+ ATPase which is activated by millimolar Ca2+ or Mg2+ (IC50 = 3.4 microM), and sarcoplasmic reticulum Ca2+-stimulated ATPase (IC50 = 6 microM). The type of inhibition for the sarcolemmal Ca2+/Mg2+ ATPase by GS was apparently uncompetitive, while that for Ca2+-stimulated ATPases in sarcolemma or sarcoplasmic reticulum was of mixed type. Other ATPases, including mitochondrial ATPase, sarcolemmal Na+-K+ ATPase, and myofibrillar ATPase, were not inhibited by this agent. GS also decreased the rat right ventricle maximum force development (half-maximal inhibitory concentration was 2-4 microM), maximum velocity of contraction, and maximum velocity of relaxation. The resting tension was increased by GS to over 200%. The contractile actions of GS were mostly irreversible upon washing the muscle 3 times over a 10-min period. Decreased Ca2+, Mg2+, Na+, K+ concentrations in the perfusate increased the effects of GS. These findings showed that GS was a potent inhibitor of divalent cation ATPases of heart sarcolemma and sarcoplasmic reticulum and it is suggested that these membrane effects may explain the cardiodepressant action of this agent.  相似文献   

2.
S. cervi showed particulate bound Ca2+ ATPase and Na+,K(+)-ATPase activities while Mg2+ ATPase was detected in traces. ATPase of S. cervi was also differentiated from the nonspecific p-nitrophenyl phosphatase activity. Female parasite and microfilariae exhibited higher Ca2+ ATPase and Na+,K(+)-ATPase activities than the male adults and the enzyme Na+,K(+)-ATPase was mainly concentrated in the gastrointestinal tract of the filarial parasite. Na+,K(+)-ATPase of the filariid was ouabain-sensitive while Ca2(+)-ATPase activity was regulated by concentration of Ca2+ ions and inhibited by EGTA. Phenothiazines, viz. trifluoperazine, promethazine and chlorpromazine caused significant inhibition of Ca2+ ATPase and Na+,K(+)-ATPase. Diethylcarbamazine was a potent inhibitor of these ATPases. Mebendazole, levamisole and centperazine also caused significant inhibition of the ATPases indicating this enzyme system as a common target for the action of anthelmintic drugs.  相似文献   

3.
This study tested the hypothesis that paraxanthine, a caffeine metabolite, stimulates skeletal muscle potassium (K+) transport by an increase in Na+ -K+ ATPase activity. The unidirectional transport of K+ into muscle (J(in)K) was studied using a perfused rat hind limb technique. Using 12 hind limbs, we examined the response to 20 min of paraxanthine perfusion (0.1 mM), followed by 20 min perfusion with 0.1 mM paraxanthine and 5 mM ouabain (n = 5) to irreversibly inhibit Na+ -K+ ATPase activity. Paraxanthine stimulated J(in)K by 23+/-5% within 20 min. Ouabain abolished the paraxanthine-induced stimulation of J(in)K, suggesting the increase in K+ uptake was due to activation of the Na+ -K+ ATPase. To confirm the role of the Na+ -K+ ATPase, 14 hind limbs were perfused for 20 min with 5 mM ouabain prior to 20 min perfusion with 0.1 mM paraxanthine and 5 mM ouabain (n = 6). Ouabain alone resulted in a 41+/-7% decrease in J(in)K within 15 min. Inhibition of ouabain-sensitive J(in)K prevented the paraxanthine-induced increase in J(in)K. Hind limbs (n = 3) were also perfused with 0.1 mM paraxanthine for 60 min to examine the response to longer duration paraxanthine perfusion. The paraxanthine-induced increase in J(in)K continued for the entire 60 min. In another series, hind limbs were perfused with 0.01 (n = 9), 0.1 (n = 9), or 0.5 (n = 6) mM paraxanthine for 15 min. There was no concentration-dependent relationship between J(in)K and paraxanthine concentration, and 0.01, 0.1, and 0.5 mM paraxanthine increased J(in)K similarly (25+/-5, 22+/-4, and 27+/-6%, respectively). The effect of paraxanthine on J(in)K could not be reversed by subsequent perfusion with paraxanthine-free perfusate. Caffeine (0.05-1.0 mM) had no effect on K+ transport. It is concluded that paraxanthine increases J(in)K in resting skeletal muscle by stimulating ouabain-sensitive Na+ -K+ ATPase activity.  相似文献   

4.
Experiments were carried out on infant rats aged five days and on adult rats (of both sexes) to investigate vanadate inhibition of (Na+-K+)ATPase activity in various parts of the brain. Vanadate was administered in 10(-5), 10(-7), 10(-8), 10(-9) and 10(-10) mol/l concentration. The enzyme activity and the effect of vanadate were studied in the tissue of the cerebral cortex, subcortical formations and the medulla oblongata. It was demonstrated that an inhibitory effect of vanadate on ouabain-sensitive ATPase could be determined in the brain of very young rats, i.e. in the immature nervous tissue. It was further demonstrated that the inhibitory effect of vanadate (in low concentrations) was significantly more potent in the nervous tissue of adult rats than in the CNS tissue of 5-day-old animals. Lastly, attention is drawn to certain differences in the sensitivity of ouabain-sensitive ATPase to the action of vanadate indifferent parts of the CNS in both the given age groups.  相似文献   

5.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

6.
The effects of concanavalin A (Con A) on membrane Ca2+/Mg2+ ATPase activities as well as the characteristics of Con A binding were examined by employing rat heart sarcolemmal preparations. Con A stimulated the Ca2+ ATPase and Mg2+ ATPase activities in sarcolemma; maximal stimulation in these parameters was seen at a concentration of 10 micrograms/ml. The observed effects of Con A were blocked by alpha-methylmannoside. Sarcolemmal Na+-K+ ATPase and Ca2+-stimulated ATPase were not affected by Con A. Likewise, Con A did not alter the mitochondrial, sarcoplasmic reticular, and myofibrillar ATPase activities. Con A was found to bind to sarcolemma; alpha-methylmannoside prevented this binding. The Scatchard plot analysis of the data on specific Con A binding showed a straight line with a Kd of about 530 nM and a Bmax of 235 pmol/mg protein, thus indicating that there was only one kind of binding site for Con A in sarcolemma. These results suggest that Con A is a specific activator of the low affinity Ca2+/Mg2+ ATPase system in the heart sarcolemmal membrane.  相似文献   

7.
Functional and optimal activities of the (Na+-K+)ATPase, as determined by ouabain-sensitive K+ influx in intact cells and ATP hydrolysis in cell homogenates respectively, have been measured during the cell cycle of neuroblastoma (clone Neuro-2A) cells. The cells were synchronized by selective detachment of mitotic cells. The ouabain-sensitive K+ influx decreased more than fourfold from 1.62 +/- 0.11 nmoles/min/10(6) cells to 0.36 +/- 0.25 nmoles/min/10(6) cells on passing from mitosis to early G1 phase. On entry into S phase a transient sixfold increase to 2.07 +/- 0.30 nmoles/min/10(6) cells was observed, followed by a rapid decline, after which the active K+ influx rose again steadily from 1.03 +/- 0.25 nmoles/min/10(6) cells in early S phase to 2.10 +/- 0.92 nmoles/min/10(6) cells just prior to the next mitosis. The ouabain-insensitive component rose linearly through the cycle in the same manner as the protein content/cell. Combining total K+ influx values with efflux data obtained previously showed that net loss of K+ occurred with transition from mitosis to G1 phase while net accumulation occurred with entry into S. Throughout mid-S phase net K+ flux was virtually zero, but a large net influx occurred again just before the next mitosis. The (Na+-K+)ATPase activity measured in cell homogenates decreased rapidly from mitosis to G1 phase and increased steadily throughout S phase, but the transient activation on entry into S phase was not observed. Complete inhibition of the (Na+-K+)ATPase mediated K+ influx by ouabain (5 mM) prevents the cells from entering S phase, while partial inhibition by lower concentrations of ouabain (0.2 and 0.5 mM; km = 0.17 mM) causes partial blockage in G1 and, to a lesser extent, a reduced rate of progression through the rest of the cell cycle. We conclude that the transient increase in (Na+-K+)ATPase mediated K+ influx at the G1/S transition is a prerequisite for entry into S phase, while maintenance of adequate levels of K+ influx is necessary for normal rate of progression through the rest of the cell cycle.  相似文献   

8.
Bleomycin 2 X 10(-6) and 6 X 10(-6) mol.1(-1) increased the activity of specific (Na+-K+) ATPase of the rat brain microsomes. It also stimulated the electrogenic (Na+-K+) pump in intact skeletal muscle cells. The blocking effect of vanadyl (+4V) on membrane (Na+-K+) ATPase was eliminated completely by the drug, but the action of vanadate (+5V) was counteracted only partially. Electron paramagnetic resonance spectra revealed the formation of a +4V - bleomycin complex which is still able to activate the (Na+-K+) ATPase.  相似文献   

9.
Isothiocyanates are potent modifiers of thiol groups, and they have been successfully applied in studying the active site structure of renal (Na+ + K+)-ATPase. However, very little has been known on interactions of isothiocyanates with myocardial sarcolemmal ATPases. In the present study the mode of interaction and inhibitory effect of p-bromophenyl isothiocyanate (BPITC) on isolated rat heart sarcolemmal preparation ATPase activities not exhibiting (Mg-Ca)-ATPase activity was investigated. BPITC in concentrations of 10(-7)-10(-4) mol . l-1 inhibited selectively and non-competitively the (Na+ + K+)-ATPase activity in the sarcolemma with an ID50 around 2.10(-7) mol . l-1. The non-specific interaction of BPITC with bivalent cations, namely with Mg2+ and Ca2+, in the reaction system was eliminated by preincubation of membranes with BPITC keeping the ratio of inhibitor to membrane protein concentration constant. Under these conditions no considerable inhibitory effects were observed on Mg2+-ATPase or the low-affinity Ca2+-ATPase of sarcolemma. Preincubation of membranes with 2 mmol . l-1 ATP protected (Na+ + K+)-ATPase activity against inhibition by BPITC. The interaction of BIPTC with the sarcolemma proved to be reversible in the presence of beta-mercaptoethanol or dithiothreitol.  相似文献   

10.
The effect of arachidonic acid in 5.10(-4) and 5.10(-5) mol.l-1 concentration (as the Na salt, SIGMA) on ouabain-sensitive ATPase (E. C. 3.6.1.3) activity was studied in the cerebral cortex and medulla oblongata of 5-day-old and adult rats. In adult rats, arachidonic acid significantly inhibited ouabain-sensitive ATPase activity in both the cerebral cortex and the medulla oblongata. In 5-day-old rats, only the higher concentration (5.10(-4) mol.l-1) inhibited the enzyme statistically significantly; use of the lower concentration was not followed by any significant changes in Na+-K+-ATPase activity.  相似文献   

11.
Kato K  Lukas A  Chapman DC  Dhalla NS 《Life sciences》2000,67(10):1175-1183
Previous studies have shown that cardiac Na+ -K+ ATPase activity in the UM-X7.1 hamster strain is decreased at an early stage of genetic cardiomyopathy and remains depressed; however, the mechanism for this decrease is unknown. The objective of the present study was to assess whether changes in the expression of cardiac Na+-K+ ATPase subunits in control and UM-X7.1 cardiomyopathic hamsters are associated with alterations in the enzyme activity. Accordingly, we examined sarcolemmal Na+-K+ ATPase activity as well as protein content and mRNA levels for the alpha1, alpha2, alpha3 and beta1-subunit of the Na+-K+ ATPase in 250-day-old UM-X7.1 and age-matched, control Syrian hamsters; this age corresponds to the severe stage of heart failure in the UM-X7.1 hamster. Na+-K+ ATPase activity in UM-X7.1 hearts was decreased compared to controls (9.0 +/- 0.8 versus 5.6 +/- 0.8 micromol Pi/mg protein/hr). Western blot analysis revealed that the protein content of Na+-K+ ATPase alpha1- and beta1-subunits were increased to 164 +/- 27% and 146 +/- 22% in UM-X7.1 hearts respectively, whereas that of the alpha2- and alpha3-subunits were decreased to 82 +/- 5% and 69 +/- 11% of control values. The results of Northern blot analysis for mRNA levels were consistent with the protein levels; mRNA levels for the alpha1- and beta1-subunits in UM-X7.1 hearts were elevated to 165 +/- 14% and 151 +/- 10%, but the alpha2-subunit was decreased to 60 +/- 8% of the control value. We were unable to detect mRNA for the alpha3-subunit in either UM-X7. 1 or control hearts. These data suggest that the marked depression of Na+-K+ ATPase activity in UM-X7.1 cardiomyopathic hearts may be due to changes in the expression of subunits for this enzyme.  相似文献   

12.
Captopril has been reported to inhibit ouabain-sensitive Na+/K+-ATPase activity in erythrocyte membrane fragments. We investigated the effect of captopril on two physiological measures of Na+/K+ pump activity: 22Na+ efflux from human erythrocytes and K+-induced relaxation of rat tail artery segments. Captopril inhibited 22Na+ efflux from erythrocytes in a concentration-dependent fashion, with 50% inhibition of total 22Na+ efflux at a concentration of 4.8 X 10(-3) M. The inhibition produced by captopril (5 X 10(-3) M) and ouabain (10(-4) M) was not greater than that produced by ouabain alone (65.3 vs. 66.9%, respectively), and captopril inhibited 50% of ouabain-sensitive 22Na+ efflux at a concentration of 2.0 X 10(-3) M. Inhibition by captopril of ouabain-sensitive 22Na efflux was not explained by changes in intracellular sodium concentration, inhibition of angiotensin-converting enzyme or a sulfhydryl effect. Utilizing rat tail arteries pre-contracted with norepinephrine (NE) or serotonin (5HT) in K+-free solutions, we demonstrated dose-related inhibition of K+-induced relaxation by captopril (10(-6) to 10(-4) M). Concentrations above 10(-4) M did not significantly inhibit K+-induced relaxation but did decrease contractile responses to NE, although not to 5HT. Inhibition of K+-induced relaxation by captopril was not affected by saralasin, teprotide or indomethacin. We conclude that captopril can inhibit membrane Na+/K+-ATPase in intact red blood cells and vascular smooth muscle cells. The mechanism of pump suppression is uncertain, but inhibition of ATPase should be considered when high concentrations of captopril are employed in physiological studies.  相似文献   

13.
Removal of spectrin and other proteins of membrane skeleton from rat erythrocyte membranes resulted in a significant loss of Na,K-ATPase and Ca-ATPase activities, and even more of respective phosphatase activities. At the same time the modulating influence of ATP and Ca2+ on the enzymes disappeared. These ATPase activities were reconstituted by addition of concentrated spectrin to spectrin-depleted membranes. The activating influence of Ca2+ on ouabain-resistant and ouabain-sensitive phosphatases in ghosts could be discovered only in the presence of ATP. The highest activities of both the phosphatases were revealed when both ATP (0.5 mM) and Ca2+ (10-30 mM) were present simultaneously in the incubation medium. These data show that the functioning of transport ATPases in non-nuclear erythrocyte membranes is related to the membrane skeleton: regulating influence of intracellular ATP and Ca2+ on enzymes seems to be realized through the proteins of the skeleton.  相似文献   

14.
The occurrence and response of Na+-K+ATPase specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). All of the gills exhibited a salinity dependent Na+-K+ATPase activity, although the pattern of response to environmental salinity was different among gills. As described in other euryhaline crabs highest Na+-K+ATPase specific activity was found in posterior gills (6 to 8), which, with exception of gill 6, increased upon acclimation to reduced salinity. However, a high increase of activity also occurred in anterior gills (1 to 5) in diluted media. Furthermore, both short and long term differential changes of Na+-K+ATPase activity occurred among the gills after the transfer of crabs to reduced salinity. The fact that variations of Na+-K+ATPase activity in the gills were concomitant with the transition from osmoconformity to ionoregulation suggests that this enzyme is a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab.  相似文献   

15.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

16.
In this article we have briefly reviewed the role of Ca2+ in the excitation contraction coupling in the myocardium and have indicated that cardiac contraction and relaxation are initiated upon raising and lowering the intracellular concentration of free Ca2+, respectively. Different mechanisms for the entry of Ca2+ through sarcolemma as well as release of Ca2+ from sarcoplasmic reticulum and possibly mitochondria have been outlined for initiating cardiac contraction. Relaxation of the cardiac muscle appears to be intimately dependent upon efflux of Ca2+ through sarcolemma as well as sequestration of Ca2+ by the intracellular storage sites, particularly sarcoplasmic reticulum and possibly mitochondria. The actions of some pharmacological and pathophysiological interventions have been explained on the basis of changes in subcellular Ca2+ movements in myocardium. Quinidine, which produced an initial positive inotropic action on rat heart was also found to increase sarcolemmal Ca2+-ATPase activity without any changes in the Na+-K+ ATPase. Other antiarrhythmic agents, procainamide and lidocaine, also increased sarcolemmal Ca2+-ATPase activity without affecting the Na+-K+ ATPase. On the other hand, both Ca2+-ATPase and Na+-K+ ATPase activities were increased in heart sarcolemma obtained from cardiomyopathic hamsters. In this model the increased Ca2+-ATPase activity may promote the occurrence of intracellular Ca2+ overload in the cardiac cell whereas the increased Na+-K+ ATPase activity may increase Ca2+ efflux through Na+-Ca2+ exchange systems as an adaptive mechanism. It has been suggested that some caution should be exercised while interpreting the data from in vitro experiments in terms of functional changes in the myocardium. Furthermore, it has been proposed that the pathophysiology and pharmacology of Ca2+ movements at different membrane sites be understood fully in normal and diseased myocardium in order to improve the therapy of heart disease.  相似文献   

17.
In this study, cell permeable diacylglycerols, sn-1,2-dioctanoglycerol (DiC8), and sn-1-oleoyl-2-acetylglycerol (OAG) were found to downregulate the activity of Na(+)-K+ pump in Xenopus laevis oocytes. Both DiC8 and OAG decreased the binding of [3H]ouabain to intact oocytes while phorbol esters did not appreciably influence the same. These diacylglycerols inhibited the amiloride-sensitive 22Na+ influx and ouabain-sensitive 86Rb+ uptake in the oocytes. Furthermore, DiC8 prevented the 22Na+ efflux from the oocytes preloaded with 22Na+. Addition of H-7 to DiC8- and OAG-treated oocytes stimulated the pump activity curtailed by the two latters. The impairment of Na(+)-K+ pump activity by diacylglycerols suggests that protein kinase C activators may stimulate endocytosis of membrane-coupled Na(+)-K+ ATPase.  相似文献   

18.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+ -induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+ -induced increase in [Ca2+], was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25-2.0 mM). The L-type Ca2+ -channel blockers, verapamil and diltiazem, at low concentrations (1 microM) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 microM), and diltiazem (5 and 10 microM) as well as with amiloride (5-20 microM), nickel (1.25-5.0 mM), cyclopiazonic acid (25 and 50 microM) and thapsigargin (10 and 20 microM). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 microM). These data suggest that in addition to the sarcolemmal Na+ - Ca2+ exchanger, both sarcolemmal Na+ - K+ ATPase, as well as the sarcoplasmic reticulum Ca2+ -pump play prominent roles in the low Na+ -induced increase in [Ca2+]i.  相似文献   

19.
The primary extrusion of Na+ from Mycoplasma gallisepticum cells was demonstrated by showing that when Na+-loaded cells were incubated with both glucose (10 mM) and the uncoupler SF6847 (0.4 microM), rapid acidification of the cell interior occurred, resulting in the quenching of acridine orange fluorescence. No acidification was obtained with Na+-depleted cells or with cells loaded with either KCl, RbCl, LiCl, or CsCl. Acidification was inhibited by dicyclohexylcarbodiimide (50 microM) and diethylstilbesterol (50 microM), but not by vanadate (100 microM). By collapsing delta chi with tetraphenylphosphonium (200 microM) or KCl (25 mM), the fluorescence was dequenched. The results are consistent with a delta chi-driven uncoupler-dependent proton gradient generated by an electrogenic ion pump specific for Na+. The ATPase activity of M. gallisepticum membranes was found to be Mg2+ dependent over the entire pH range tested (5.5 to 9.5). Na+ (greater than 10 mM) caused a threefold increase in the ATPase activity at pH 8.5, but had only a small effect at pH 5.5. In an Na+-free medium, the enzyme exhibited a pH optimum of 7.0 to 7.5, with a specific activity of 30 +/- 5 mumol of phosphate released per h per mg of membrane protein. In the presence of Na+, the optimum pH was between 8.5 and 9.0, with a specific activity of 52 +/- 6 mumol. The Na+-stimulated ATPase activity at pH 8.5 was much more stable to prolonged storage than the Na+-independent activity. Further evidence that two distinct ATPases exist was obtained by showing that M. gallisepticum membranes possess a 52-kilodalton (kDa) protein that reacts with antibodies raised against the beta-subunit of Escherichia coli ATPase as well as a 68-kDa protein that reacts with the anti-yeast plasma membrane ATPases antibodies. It is postulated that the Na+ -stimulated ATPases functions as the electrogenic Na+ pump.  相似文献   

20.
Effects of lanthanum on Ca2+-ATPase, Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities were studied in rat heart sarcolemma. Ten to 100 micrometers lanthanum depressed significantly the Ca2+-ATPase activity and 50--200 micrometers lanthanum inhibited the calcium binding activity. Lineweaver-Burk plots of the Ca2+-ATPase activity showed that the inhibition by lanthanum was competitive with calcium concentration. Neither Mg2+-ATPase nor Na+-K+-ATPase activities were affected by lanthanum when the assay medium contained 1 mM EDTA; however, in the absence of EDTA, these enzyme activities were significantly decreased by 10--100 micrometers lanthanum. Rat hearts perfused with HEPES buffer containing 0.5 mM lanthanum showed electron-dense deposits restricted to the outer cell surface and the sarcolemma obtained from these hearts also had the deposits, indicating that the membrane fraction isolated by the hypotonic shock--LiBr treatment method is of sarcolemmal origin. The Ca2+-ATPase activity of the sarcolemma isolated from lanthanum-perfused hearts, unlike the Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities, was significantly less than the control value. From these observations it is suggested that lanthanum may influence calcium movement across the sarcolemma by affecting sarcolemmal ATPase and calcium binding activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号