首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of the protective effect of three antioxidants (from three different chemical classes) against cell injury due to LDL oxidation, allowed us to clearly discriminate between two different lines of defence. The ultraviolet-induced lipid peroxidation of LDL was strongly inhibited by 10 mumol/l catechin and 25 mumol/l probucol, but only poorly by 100 mumol/l vitamin E. The ultraviolet-treated LDL protected by catechin or probucol (i.e. LDL irradiated by ultraviolet in the presence of effective concentrations of antioxidants inhibiting the lipid peroxidation) were much less 'cytotoxic' than unprotected ultraviolet-treated LDL. In contrast, LDL treated by ultraviolet in the presence of 100 mumol/l vitamin E were 'cytotoxic' similarly to unprotected LDL. The level of 'cytotoxicity' of LDL treated by ultraviolet in the presence of antioxidants (protected ultraviolet-treated LDL) was well correlated with their content in lipid peroxidation markers. Therefore these markers can be useful for predicting the 'cytotoxicity' of oxidized LDL and subsequently the protective effect of the tested antioxidants. The 'cytotoxicity' of unprotected ultraviolet-treated LDL (i.e. LDL irradiated by ultraviolet in the absence of exogenous antioxidant) can be effectively blocked by preincubation of the cells with antioxidants. Catechin (10 mumol/l) and vitamin E (100 mumol/l) are very effective cytoprotective agents, whereas probucol (up to 50 mumol/l) was completely ineffective under these experimental conditions. The cytoprotective effect of vitamin E was associated to a complete inhibition of the cellular TBARS formation induced by ultraviolet-treated LDL, whereas the cytoprotective effect of catechin was relatively independent on the TBARS inhibition. All these results showed that: (1) probucol (25 mumol/l) is very effective to prevent lipid peroxidation of LDL and their subsequent 'cytotoxicity', but it cannot protect cells against the 'cytotoxicity' of previously oxidized LDL; (2) vitamin E (100 mumol/l) prevents poorly the ultraviolet-induced lipid peroxidation of LDL, but is able to block simultaneously the cellular oxidative stress and the 'cytotoxicity' induced by previously oxidized LDL; and (3) catechin (10 mumol/l) exhibited two types of protective effects: it inhibits the lipid peroxidation of LDL (and their subsequent 'cytotoxicity') and very effectively protects the cells against 'toxicity' of previously oxidized LDL (with only little inhibition of the cellular oxidative stress).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

3.
Monoclonal antibodies directed against the low density lipoprotein (LDL) receptor have been prepared by immunization of mice with a partially purified receptor from bovine adrenal cortex. Spleen cells from the mice were fused with the Sp2/0-Ag14 line of mouse myeloma cells. The most extensively studied monoclonal antibody, designated immunoglobulin-C7, reacts with the human and bovine LDL receptor, but not with receptors from the mouse, rat, Chinese hamster, rabbit, or dog. 125I-labeled monoclonal antibody binds to human fibroblasts in amounts that are equimolar to 125I-LDL. In fibroblasts from 6 of 8 patients with the receptor-negative form of homozygous familial hypercholesterolemia, which have less than 5% of normal LdL binding, the amount of monoclonal antibody binding was also less than 5% of normal. Fibroblasts from the other two receptor-negative homozygotes bound an amount of monoclonal antibody that was much greater than expected on the basis of LDL binding, suggesting that these two patients produce a structurally altered receptor that binds the antibody, but not LDL. In normal fibroblasts, the receptor-bound monoclonal antibody was taken up and degraded at 37 degrees C at rapid rate similar to that for LDL. Fibroblasts from a patient with the internalization defective form of familial hypercholesterolemia bound the monoclonal antibody, but did not internalize or degrade it. The current data demonstrate the usefulness of monoclonal antibodies as probes for the study of the cellular and genetic factors involved in receptor-mediated endocytosis.  相似文献   

4.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

5.
The metabolism of low density lipoproteins (LDL), and LDL modified by reductive methylation (M-LDL) of lysine residues, was studied in proximal tubular (PT) cells both from normal human kidney and from urine of patients with homozygous (LDL receptor-negative) familial hypercholesterolemia (FH). LDL and M-LDL was labeled either in the protein moiety with 125I or in the lactosylceramide moiety with 3H. The binding and degradation of 125I-LDL in normal cells was saturable and displaced by unlabeled LDL but not by M-LDL. The uptake of [3H]lactosylceramide (LacCer) low density lipoprotein in normal renal cells was saturable, and time and temperature-dependent. Exogenously derived [3H]LacCer on LDL was rapidly taken up and catabolized to monoglycosylceramide, or it was utilized for the endogenous synthesis of globotriaosylceramide (trihexosylceramide) and globotetraosylceramide (tetraglycosylceramide). [3H]LacCer M-LDL was taken up less avidly and metabolized less extensively than [3H]LacCer-LDL in normal cells. In homozygous FH renal cells the binding of 125I-LDL was not saturable and not displaced by unlabeled LDL. 125I-LDL degradation did not occur in FH cells. The homozygous FH PT cells took up a 2-fold greater amount of exogenously derived [3H]LacCer on LDL than normal cells. Yet, most of the [3H]LacCer taken up by FH PT cells accumulated as LacCer, and only small amounts were metabolized to monoglycosylceramide, globotriaosylceramide (trihexosylceramide), or globotetraosylceramide (tetraglycosylceramide). When normal and FH PT cells were preincubated with LDL (0-100 micrograms/ml medium), there was a 5-fold increase in cellular LacCer levels in FH cells at saturating levels of LDL, whereas there was about a 50% decrease in LacCer levels in normal cells. While the high affinity binding of LDL was not essential for the delivery of LacCer to cells, the data support the conclusion that LDL binding to the LDL receptor facilitates further LacCer processing and metabolism in normal renal cells. We speculate that [3H] LacCer is taken up by FH homozygous cells via a LDL receptor-independent mechanism and accumulates in the cells without significant metabolism. LacCer taken up by this mechanism contributes to the storage of LacCer in FH PT cells.  相似文献   

6.
Two novel cholesteryl ether derivatives were synthesized and radioiodinated: (1) [125I]cholesteryl m-iodobenzyl ether (125I-CIBE) and (2) [125I]cholesteryl 12-(m-iodophenyl)dodecyl ether (125I-CIDE). These radioiodinated ethers were incorporated into low-density lipoprotein (LDL) by incubating the compounds (solubilized in saline with Tween-20) with isolated LDL or with whole plasma. Such LDL preparations were taken up by cultured fibroblasts in a receptor-dependent manner similar to that of radioiodinated LDL. Upon injection into guinea pigs, 125I-CIBE-labeled guinea pig LDL cleared from the plasma similarly to radioiodinated guinea pig LDL. The primary sites of 125I-CIBE uptake were the adrenal and the liver, and the compound was stable to both hydrolysis and deiodination over 24 h. In summary, 125I-CIBE and 125I-CIDE, like previously described tritiated cholesteryl ethers, appear to be potentially useful tracers of cholesteryl ester uptake. Moreover, these radioiodinated probes have the advantage of being more easily quantitated in tissue samples as well as being detectable by noninvasive scintigraphic imaging.  相似文献   

7.
Human low density lipoprotein (LDL), radiolabeled in the cholesteryl ester moiety, was injected into estrogen-treated and -untreated rats. The hepatic and extrahepatic distribution and biliary secretion of [3H]cholesteryl esters were determined at various times after injection. In order to follow the intrahepatic metabolism of the cholesteryl esters of LDL in vivo, the liver was subfractioned into parenchymal and Kupffer cells by a low temperature cell isolation procedure. In control rats, the LDL cholesteryl esters were mainly taken up by the Kupffer cells. After uptake, the [3H]cholesteryl esters are rapidly hydrolyzed, followed by release of [3H]cholesterol from the cells to other sites in the body. Up to 24 h after injection of LDL, only 9% of the radioactivity appeared in the bile, whereas after 72 h, this value was 30%. Hepatic and especially the parenchymal cell uptake of [3H]cholesteryl esters from LDL was strongly increased upon 17 alpha-ethinylestradiol treatment (3 days, 5 mg/kg). After rapid hydrolysis of the esters, [3H]cholesterol was both secreted into bile (28% of the injected dose in the first 24 h) as well as stored inside the cells as re-esterified cholesterol ester. It is concluded that uptake of human LDL by the liver in untreated rats is not efficiently coupled to biliary secretion of cholesterol (derivatives), which might be due to the anatomical localization of the principal uptake site, the Kupffer cells. In contrast, uptake of LDL cholesterol ester by liver hepatocytes is tightly coupled to bile excretion. The Kupffer cell uptake of LDL might be necessary in order to convert LDL cholesterol (esters) into a less toxic form. This activity can be functional in animals with low receptor activity on hepatocytes, as observed in untreated rats, or after diet-induced down-regulation of hepatocyte LDL receptors in other animals.  相似文献   

8.
Human lymphocytes respond optimally to mitogenic stimulation when cultured in serum-free medium supplemented with transferrin if fatty acids necessary for maximal proliferation are provided. Either lipoproteins or exogenous fatty acids support optimal lymphocyte responses. The current studies examined the role of cell surface receptors for low density lipoprotein (LDL) in the enhancement of lymphocyte proliferation. Support of lymphocyte growth by limiting concentrations of LDL was found to involve interaction of the lipoprotein with LDL receptors. Thus, modification of LDL by reductive methylation so as to inhibit receptor-mediated interactions markedly decreased the capacity of LDL to enhance lymphocyte proliferation. Moreover, growth of lymphocytes obtained from patients with LDL receptor-negative homozygous familial hypercholesterolemia was minimal when cultures were supplemented with low concentrations of LDL (less than 10 micrograms cholesterol/ml). LDL also enhanced lymphocyte proliferation by a receptor-independent mechanism since high concentrations (greater than or equal to 50 micrograms cholesterol/ml) supported growth of both normal and familial hypercholesterolemia lymphocytes. In contrast, support of lymphocyte proliferation by high density lipoprotein (HDL) subclass 3 was completely independent of LDL receptors. Thus, HDL3 enhanced responses of both normal and familial hypercholesterolemia lymphocytes in an equivalent concentration-dependent manner; this effect was not altered by reductive methylation of HDL3. One function of lipoproteins in this system may be the provision of fatty acids since oleic and linoleic acids enhanced DNA synthesis by both normal and familial hypercholesterolemia lymphocytes in the absence of lipoproteins. These results indicate that lipoproteins may provide fatty acids necessary for optimal proliferation of human lymphocytes by both LDL receptor-mediated and LDL receptor-independent interactions.  相似文献   

9.
Human plasma low density lipoprotein (LDL) that had been rendered polycationic by coupling with N, N-dimethyl-1, 3-propanediamine (DMPA) was shown by electron microscopy to bind in clusters to the surface of human fibroblasts. The clusters resembled those formed by polycationic ferritin (DMPA-feritin), a visual probe that binds to anionic site on the plasma membrane. Biochemical studies with (125)I-labeled DMPA-LDL showed that the membrane-bound lipoprotein was internalized and hydrolyzed in lysosomes. The turnover time for cell bound (125)I-DMPA-LDL, i.e., the time in which the amount of (125)I-DMPA-LDL degraded was equal to the steady-state cellular content of the lipoprotein, was about 50 h. Because the DMPA-LDL gained access to fibroblasts by binding nonspecifically to anionic sites on the cell surface rather than by binding to the physiologic LDL receptor, its uptake failed to be regulated under conditions in which the uptake of native LDL was reduced by feedback suppression of the LDL receptor. As a result, unlike the case with native LDL, the DMPA-LDL accumulated progressively within the cell, and this led to a massive increase in the cellular content of both free and esterified cholesterol. Studies with (14)C-oleate showed that at least 20 percent of the accumulated cholesteryl esters represented cholesterol that had been esterified within the cell. After 4 days of incubation with 10 μg/ml of DMPA-LDL, fibroblasts had accumulated so much cholesteryl ester that neutral lipid droplets were visible at the light microscope level with Oil Red O staining. By electron microscopy, these intracellular lipid droplets were observed to lack a tripartite limiting membrane. The ability to cause the overaccumulation of cholesteryl esters within cells by using DMPA-LDL provides a model system for study of the pathologic consequences at the cellular level of massive deposition of cholesteryl ester.  相似文献   

10.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

11.
We have studied the uptake and metabolism of phosphatidylcholine (PC), the major phospholipid of low density lipoproteins (LDL), by cultures of primary hepatocytes. Strikingly, in the absence of the LDL receptor, PC incorporation into hepatocytes was inhibited by only 30%, whereas cholesteryl ether uptake was inhibited by 60-70%. On the other hand, scavenger receptor class B, type I, the other important receptor for LDL in the liver, was found to be responsible for the uptake of the remaining 30-40% of LDL-cholesteryl ether. PC uptake was, however, only partially inhibited (30%) in scavenger receptor class B, type I, knock-out hepatocytes. Once LDL-PC was taken up by hepatocytes, approximately 50% of LDL-[(3)H]oleate-PC was converted to triacylglycerol rather than degraded in lysosomes as occurs for LDL-derived cholesteryl esters. The remainder of the LDL-derived PC was not significantly metabolized to other products. Triacylglycerol synthesis from LDL-PC requires a PC-phospholipase C activity as demonstrated by inhibition with the phospholipase C inhibitor D609 or activation with rattlesnake venom. Small interfering RNA-mediated suppression of acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), but not DGAT1, decreased the acylation of the LDL-derived diacylglycerol. These findings show that PC in LDL particles is taken up not only by the classical receptors but also by additional mechanism(s) followed by metabolism that is completely different from the cholesteryl esters or apoB100, the other main components of LDL.  相似文献   

12.
Summary Mutations of the low density lipoprotein (LDL) receptor in 16 Japanese kindreds with homozygous familial hypercholesterolemia (FH) were studied using an anti-LDL receptor antibody. The LDL receptor mutations in Japanese FH were heterogeneous and included defects in synthesis, posttranslational processing, ligand-binding activity, and internalization of the LDL receptor. Of the 16 kindreds, 10 were receptor-negative and 5, receptor-defective types and 1 was an internalization-defective type with respect to LDL binding. The receptor-negative group was further subdivided into four groups: those with cells producing (i) no immunodetectable receptor (five kindreds); (ii) 160-kd mature receptors, which were quite scarce (two kindreds); (iii) receptors that could not be processed to the mature receptor properly (two kindreds); and (iv) receptors with an apparent molecular weight smaller than normal (one kindred). The last kindred synthesized an about 155-kd mature receptor that was rapidly degraded. This finding is compatible with the low concentration of the cell surface LDL receptors and decreased binding activity for LDL in the cells of this kindred. The receptor-defective group, which could produce a residual amount of functional receptors, exhibited a lower tendency to coronary artery disease than the receptor-negative group.  相似文献   

13.
Abstract

Low density lipoprotein (LDL), the major cholesterol transport protein in human plasma, consists of an apolar core of cholesteryl esters surrounded by a polar shell containing phospho-lipids, unesterified cholesterol and protein. In the current paper we report the absorption and fluorescence spectra of members of a new class of lipophilic fluorescein derivatives which were designed to be reconstituted into the core of LDL in place of the native cholesteryl esters. One of these derivates, cholesteryl 12–0-[methyl 3–0-methyl-5′(6′)-carboxyfluorescein]ricinoleyl carbonate (MMC) was reconstituted into the core of LDL. The resultant fluorescent reconstituted LDL was used in conjunction with flow cytometry to quantify the LDL receptor activity of fresh blood lymphocytes derived from normal individuals and from patients with the heterozygous and homozygous forms of familial hypercholesterolemia (FH). The LDL receptor activities of the heterozygous and homozygous FH lymphocytes were approximately 37% and 1% of normal, respectively. LDL reconstituted with these lipophilic fluorescein derivatives will be valuable in studying LDL metabolism and may be useful for the diagnosis of FH.  相似文献   

14.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

15.
In a randomized, cross-over feeding trial involving 10 men with polygenic hypercholesterolemia, a control, Mediterranean-type cholesterol-lowering diet, and a diet of similar composition in which walnuts replaced approximately 35% of energy from unsaturated fat, were given for 6 weeks each. Compared with the control diet, the walnut diet reduced serum total and LDL cholesterol by 4.2% (P = 0.176), and 6.0% (P = 0.087), respectively. No changes were observed in HDL cholesterol, triglycerides, and apolipoprotein A-I levels or in the relative proportion of protein, triglycerides, phospholipids, and cholesteryl esters in LDL particles. The apolipoprotein B level declined in parallel with LDL cholesterol (6.0% reduction). Whole LDL, particularly the triglyceride fraction, was enriched in polyunsaturated fatty acids from walnuts (linoleic and alpha-linolenic acids). In comparison with LDL obtained during the control diet, LDL obtained during the walnut diet showed a 50% increase in association rates to the LDL receptor in human hepatoma HepG2 cells. LDL uptake by HepG2 cells was correlated with alpha-linolenic acid content of the triglyceride plus cholesteryl ester fractions of LDL particles (r(2) = 0.42, P < 0.05). Changes in the quantity and quality of LDL lipid fatty acids after a walnut-enriched diet facilitate receptor-mediated LDL clearance and may contribute to the cholesterol-lowering effect of walnut consumption.  相似文献   

16.
Our aim was to identify and quantify the major in vivo pathways of lipoprotein cholesteryl ester transport in humans. Normal (n = 7), bile fistula (n = 5), and familial hypercholesterolemia (FH; n = 1) subjects were studied. Each received isotopic free cholesterol in HDL, LDL, or particulate form, along with another isotope of free or esterified cholesterol or mevalonic acid. VLDL, intermediate density lipoprotein (IDL), LDL, HDL, blood cells, and bile were collected for up to 6 days for analysis of radioactivity and mass of free and esterified cholesterol. These raw data were subjected to compartmental analysis using the SAAM program. Results in all groups corroborated net transport of free cholesterol to the liver from HDL, shown previously in fistula subjects. New findings revealed that 70% of ester was produced from free cholesterol in HDL and 30% from free cholesterol in LDL, IDL, and VLDL. No evidence was found for tissue-produced ester in plasma. There was net transfer of cholesteryl ester to VLDL and IDL from HDL and considerable exchange between LDL and HDL. Irreversible ester output was from VLDL, IDL, and LDL, but very little was from HDL, suggesting that selective and holoparticle uptakes of HDL ester are minor pathways in humans. It follows that 1) they contribute little to reverse transport, 2) very high HDL would not result from defects thereof, and 3) the clinical benefit of high HDL is likely explained by other mechanisms. Reverse transport in the subjects with bile fistula and FH was facilitated by ester output to the liver from VLDL plus IDL.  相似文献   

17.
Conjugates of ferritin with low density lipoproteins (LDL) were prepared and separated by sucrose gradient centrifugation. These conjugates, at cholesterol concentration of 100--132 microgram/ml, caused a greater than 90% suppression of hydroxymethylglutaryl coenzyme A reductase activity and of acetate incorporation into cholesterol in cultured skin fibroblasts from a normal subject as well as from a subject with homozygous familial hypercholesterolemia. The half maximal inhibition concentration was approx. 10 microgram/ml cholesterol for LDL and ferritin . (LDL)2 and 5 microgram/ml for (ferritin)2 . LDL in both cell lines. In contrast, native low density lipoproteins have only a minimal inhibitory effect in homozygous cells. The ability of the conjugates to stimulate the incorporation of oleate into cholesteryl esters was also equal in the two cell lines, although the conjugates were only 10% as active as low density lipoproteins in the normal cells. LDL reduced the ferritin . (LDL)2-mediated suppression of hydroxymethylglutaryl-CoA reductase activity in homozygous cells while ferritin . (LDL)2 reduced the LDL-mediated stimulation of cholesteryl ester formation in normal cells.  相似文献   

18.
For monitoring low-density lipoprotein receptors (LDLr) in tumors and in livers of patients with familial hypercholesterolemia (FH) treated with gene therapy, a series of tricarbocyanine cholesteryl laurates were synthesized with the cholesteryl laurate moiety serving as the lipid-chelating anchor for low-density lipoprotein (LDL). One of these conjugates, TCL17, was successfully used to label LDL to give a new NIRF, TCL17-LDL. Ex vivo biological studies on an LDLr overexpressing tumor model, human hepatoblastoma G(2) (HepG(2)), confirmed that this NIRF were internalized selectively by the tumor and detected with high sensitivity by a low-temperature 3-D redox scanner.  相似文献   

19.
Cholesteryl ester uptake by the human hepatoma cell line HepG2 was studied in vitro by using radiolabeled cholesteryl ester as a tracer. After the cells were incubated in a lipoprotein deficient condition, the rate of radio labeled cholesteryl ester uptake from low-density lipoprotein (LDL) was estimated to be some 25-times higher than that from high-density lipoprotein (HDL). LDL-cholesteryl ester uptake was suppressed by preincubation of the cells with LDL, but pretreatment of the cells with HDL did not show significant effect. HDL-cholesteryl ester uptake was only slightly suppressed by pretreatment of the cells with LDL, and there was no effect with HDL pretreatment. HDL-cholesteryl ester uptake was not affected either by the presence of LDL or human plasma lipid transfer protein alone in the medium under our experimental conditions. Lipid transfer protein enhanced the uptake of radiolabeled cholesteryl ester originating from HDL by the cells only in the presence of LDL. Thus, lipid transfer protein catalyzes a bypass to LDL for the uptake by HepG2 cells of cholesteryl ester molecules which originate in HDL, and this pathway is much more efficient than direct uptake of cholesteryl ester originating in HDL by these cells.  相似文献   

20.
A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号