首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

2.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

3.
Changes in Electrical Conductance of Rhodopsin on Photolysis   总被引:1,自引:0,他引:1       下载免费PDF全文
The change in electrical conductance of rhodopsin solutions was studied with flash-photolysis techniques. The whole pattern of the conductance change on illumination consists of three different processes: (I) the initial decrease, (II) the increase, and (III) the slow decrease, which are in decreasing order of reaction rate. The processes I, II, and III can be most distinctly recognized on flash illumination of acid, slightly acid, and alkaline rhodopsins, respectively. On the other hand, the bleaching of rhodopsin also shows at least three successive phases of different rates, but none of them corresponds in reaction rate to any of the processes of the conductance change. The conductance change may be related to conformational changes of opsin following photoisomerization of retinene, being due to hydrogen or hydroxyl ions and some other inorganic electrolytes. The amount of the change, especially the initial decrease, is proportional to the amount of rhodopsin bleached, even when the photochemical back reaction towards rhodopsin and isorhodopsin occurs in the chromophore depending on the intensity of illumination. Of the three processes, the slow decrease is most severely affected by aging, but the initial decrease and increase are slightly affected. These two processes promptly caused by illumination are connected closely to the conformational changes during the conversion of rhodopsin to metarhodopsin, and perhaps to the initial stage of excitation of rod cells.  相似文献   

4.
A spectrally silent transformation in the photolysis of octopus rhodopsin was detected by the time-resolved transient grating method. Our results showed that at least two photointermediates, which share the same chromophore absorption spectrum, exist after the final absorption changes. Previously, mesorhodopsin was thought to decay to the final photoproduct, acid metarhodopsin with a lifetime of 38 micros at 15 degrees C, but the present results show that there is at least one intermediate species (called transient acid metarhodopsin) with a lifetime of 180 micros at 15 degrees C, before forming acid metarhodopsin. This indicates that the parts of the protein distant from the chromophore are still changing even after the changes in microenvironment around the chromophore are over. From the signal intensity detected by the transient grating method, the volume change of the spectrally silent transformation was found to be DeltaV = 13 ml/mol. The activation energy of the spectrally silent transformation is much lower than those of other transformations of octopus rhodopsin. Since stable acid metarhodopsin has not been shown to activate the G protein, this transient acid metarhodopsin may be responsible for G protein activation.  相似文献   

5.
The enthalpy changes associated with each of the major steps in the photoconversion of octopus rhodopsin have been measured by direct photocalorimetry. Formation of the primary photoproduct (bathorhodopsin) involves energy uptake of about 130 kJ/mol, corresponding to storage of over 50% of the exciting photon energy, and is comparable to the energy storage previously observed in bovine rhodopsin. Subsequent intermediates involve the step-wise dissipation of this energy to give the physiological end-product (acid metarhodopsin) at a level only slightly above the parent rhodopsin. No significant differences in energetics are observed between rhodopsin in microvilli membrane suspensions or detergent dispersions. Use of different buffer systems in the calorimetric experiments shows that conversion of rhodopsin to acid metarhodopsin involves no light-induced protonation change, whereas alkali metarhodopsin photoproduction occurs with the release of one proton per molecule and an additional enthalpy increase of about 50 kJ/mol. Van't Hoff analysis of the effect of temperature on the reversible metarhodopsin equilibrium gives an enthalpy for the acid alkali transition consistent with this calorimetric result, and the proton release is confirmed by direct observation of light-induced pH changes. Acid-base titration of metarhodopsin yields an apparent pK of 9.5 for this transition, though the pH profile deviates slightly from ideal titration behaviour. We suggest that a high energy primary photoproduct is an obligatory feature of efficient biological photodetectors, as opposed to photon energy transducers, and that the similarity at this stage between cephalopod and vertebrate rhodopsins represents either convergent evolution at the molecular level or strong conservation of a crucial functional characteristic.  相似文献   

6.
The correlation between the absorption spectral changes and the increase in protein fluorescence after short illumination of suspensions of bovine photoreceptor disk membrane fragments was investigated. A comparison of the kinetics of the thermal formation of rhodopsin photoproducts with those of the increase in fluorescence indicates a close correspondence between the thermal formation of metarhodopsin III465 and the light-induced fluorescence increase. This result suggests that a conformational change, probably involving a decrease in the polarity of the environment of tryptophan residues, occurs in association with the formation of metarhodopsin III465.  相似文献   

7.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

8.
The early receptor potential (ERP) was recorded intracellularly from Limulus ventral photoreceptors. The ERP in cells dissected under red light was altered by exhaustive illumination. No recovery to the original wafeform was observed, even after 1 h in the dark. The ERP waveform could be further altered by chromatic adaptation or by changes in pH. The results indicate that at pH 7.8 there are two interconvertible pigment states with only slightly different lambdamax, whereas at pH 9.6 there are two interconvertible states with very different lambdamax. Under all conditions studied the ERPs were almost identical with those previously obtained in squid retinas. This strongly suggests that light converts Limulus rhodopsin to a stable photoequilibrium mixture of rhodopsin to a stable photoequilibrium mixture of rhodopsin and metarhodopsin and that, as in squid, the lambdamax of metarhodopsin depends on pH. This conversion at pH 7.8 is associated with a small (0.7 log unit) decrease in the maximum sensitivity of the late receptor potential. Thus the component of adaptation linked to changes in rhodopsin concentration is unimportant in comparison to the "neural" component.  相似文献   

9.
Flash-induced changes of light-absorption and of light-scattering of vertebrate rod outer segments (ROS) from frog and cattle in suspension were measured at 380 and 800 nm. The photometer used allows the observation of light intensity changes under well defined angles. We studied the successive decrease of the signal amplitude in series of flashes. One flash bleaches about 1% rhodopsin. The following results are discussed:
  1. The signal at 380 nm is a superposition of the absorption change caused by formation of metarhodopsin II and of a biphasic additional signal. The latter exists only for the initial range of bleaching (15 to 25% rhodopsin).
  2. At 800 nm three scattering signals are observed which are characterized by their successive amplitude decrease and time course:
N: A small signal with time course and successive amplitude decrease comparable to the metarhodopsin II absorption change, probably arising from a structural change within the disc membrane. Ni: A slow signal, disappearing with the first flash, which may be understood as an outer membrane effect. P: A biphasic signal with a successive decrease rate, by a factor of 10 to 20 higher than that of the metarhodopsin II signal. The two kinetically different components are separated by variation of the observation angle. Two regions of different extension appear to change structurally with different time course. “P” may reflect an influence of the light-induced transmitter release on disc shape and/or mass.  相似文献   

10.
Rhodopsin is the best-understood member of the large G protein-coupled receptor (GPCR) superfamily. The G-protein amplification cascade is triggered by poorly understood light-induced conformational changes in rhodopsin that are homologous to changes caused by agonists in other GPCRs. We have applied the "antibody imprint" method to light-activated rhodopsin in native membranes by using nine monoclonal antibodies (mAbs) against aqueous faces of rhodopsin. Epitopes recognized by these mAbs were found by selection from random peptide libraries displayed on phage. A new computer algorithm, FINDMAP, was used to map the epitopes to discontinuous segments of rhodopsin that are distant in the primary sequence but are in close spatial proximity in the structure. The proximity of a segment of the N-terminal and the loop between helices VI and VIII found by FINDMAP is consistent with the X-ray structure of the dark-adapted rhodopsin. Epitopes to the cytoplasmic face segregated into two classes with different predicted spatial proximities of protein segments that correlate with different preferences of the antibodies for stabilizing the metarhodopsin I or metarhodopsin II conformations of light-excited rhodopsin. Epitopes of antibodies that stabilize metarhodopsin II indicate conformational changes from dark-adapted rhodopsin, including rearrangements of the C-terminal tail and altered exposure of the cytoplasmic end of helix VI, a portion of the C-3 loop, and helix VIII. As additional antibodies are subjected to antibody imprinting, this approach should provide increasingly detailed information on the conformation of light-excited rhodopsin and be applicable to structural studies of other challenging protein targets.  相似文献   

11.
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysis-rapid scan spectrophotometry near physiological temperature. The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin leads to mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodopsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

12.
13.
The second extracellular loop of rhodopsin folds back into the membrane-embedded domain of the receptor to form part of the binding pocket for the 11-cis-retinylidene chromophore. A carboxylic acid side chain from this loop, Glu181, points toward the center of the retinal polyene chain. We studied the role of Glu181 in bovine rhodopsin by characterizing a set of site-directed mutants. Sixteen of the 19 single-site mutants expressed and bound 11-cis-retinal to form pigments. The lambda(max) value of mutant pigment E181Q showed a significant spectral red shift to 508 nm only in the absence of NaCl. Other substitutions did not significantly affect the spectral features of the mutant pigments in the dark. Thus, Glu181 does not contribute significantly to spectral tuning of the ground state of rhodopsin. The most likely interpretation of these data is that Glu181 is protonated and uncharged in the dark state of rhodopsin. The Glu181 mutants displayed significantly increased reactivity toward hydroxylamine in the dark. The mutants formed metarhodopsin II-like photoproducts upon illumination but many of the photoproducts displayed shifted lambda(max) values. In addition, the metarhodopsin II-like photoproducts of the mutant pigments had significant alterations in their decay rates. The increased reactivity of the mutants to hydroxylamine supports the notion that the second extracellular loop prevents solvent access to the chromophore-binding pocket. In addition, Glu181 strongly affects the environment of the retinylidene Schiff base in the active metarhodopsin II photoproduct.  相似文献   

14.
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Modification with Alexa594 allowed the monitoring of fluorescence changes at a red excitation light wavelength of 605 nm, thus avoiding significant rhodopsin bleaching. Upon absorption of a photon by rhodopsin, the fluorescence intensity increased as much as 20% at acidic pH with an apparent pK(a) of approximately 6.8 at 4 degrees C, and was sensitive to the presence of hydroxylamine. These findings indicated that the increase in fluorescence is specific for metarhodopsin II. In the presence of transducin, a significant increase in fluorescence was observed. This increase of fluorescence emission intensity was reduced by addition of GTP, in agreement with the fact that transducin enhances the formation of metarhodopsin II. Under conditions that favored the formation of a metarhodopsin II-Alexa594 complex, transducin slightly decreased the fluorescence. In the presence of arrestin, under conditions that favored the formation of metarhodopsin I or II, a phosphorylated, photolyzed rhodopsin-Alexa594 complex only slightly decreased the fluorescence intensity, suggesting that the cytoplasmic surface structure of metarhodopsin II is different in the complex with arrestin and transducin. These results demonstrate the application of Alexa594-modified rhodopsin (Alexa594-rhodopsin) to continuously monitor the conformational changes in rhodopsin during light-induced transformations and its interactions with other proteins.  相似文献   

15.
Motoyuki Tsuda 《BBA》1979,545(3):537-546
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysisrapid scan spectrophotometry near physiological temperature.The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin → mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodospsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

16.
The rhabdoms of Euphausia superba contain one digitonin-extractable rhodopsin, lambda max 485 nm. The rhodopsin undergoes unusual pH- dependent spectral changes: above neutrality, the absorbance decreases progressively at 485 nm and rises near 370 nm. This change is reversible and appears to reflect an equilibrium between a protonated and an unprotonated form of the rhodopsin Schiff-base linkage. Near neutral pH and at 10 degrees C, the rhodopsin is partiaLly converted by 420-nm light to a stable 493-nm metarhodopsin. The metarhodopsin is partially photoconverted to rhodopsin by long-wavelength light in the absence of NH2OH; in the presence of NH2OH, it is slowly converted to retinal oxime and opsin. The rhodopsin of Meganyctiphanes norvegica measured in fresh rhabdoms by microspectrophotometry has properties very similar to those of the extracted rhodopsin of E. superba. Its lambda max is 488 nm and it is partially photoconverted by short wavelength irradiation to a stable photoconvertible metarhodopsin similar to that of E. superba. In the presence of light and NH2OH, the M. norvegica metarhodopsin is converted to retinal oxime and opsin. Our results indicate that previous determinations of euphausiid rhodopsin absorbance spectra were incorrect because of accessory pigment contamination.  相似文献   

17.
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.  相似文献   

18.
Rhodopsin in bovine photoreceptor disk membranes was subjected to limited proteolysis by thermolysin, removing twelve amino acids from rhodopsin's carboxyl terminus. (1) The rate of proteolysis is significantly faster with rhodopsin following exposure to light than with unbleached rhodopsin, provided that the incubation conditions (pH, temperature) favor the formation of metarhodopsin II. (2) If the disk membranes are illuminated under conditions in which metarhodopsin I is the predominant photoproduct (pH 8.5, 0°C), no increase in the rate of proteolysis is observed compared to unilluminated membranes. (3) The light-induced increase in the rate of proteolysis is transient: it slowly decays in the dark to the original rate found for unbleached rhodopsin. The enhanced susceptibility to proteolysis appears to measure a conformational change at rhodopsin's cytoplasmic surface which is first exhibited at the metarhodopsin II stage. This and possibly other light-dependent changes may allow rhodopsin to mediate its signal as a light-receptor protein by binding to and activating certain rod cell enzymes.  相似文献   

19.
The decay reactions of metarhodopsin II and the dissociation of the complex between rhodopsin (in the metarhodopsin II state) and the GTP-binding protein (G-protein) (in its inactive, GDP-binding form) have been compared at various concentrations of hydroxylamine. The reactions of the chromophore were measured by absorption changes in the visible range, the complex dissociation by changes in the near-in-frared scattering. An additional monitor of the complex was given by the G-protein-dependent equilibrium between metarhodopsin I and metarhodopsin II. For all measurements, fragments of isolated bovine rod outer segments in suspension were used. In the absence of hydroxylamine, the rhodopsin-G-protein complex dissociated within 20–30 min at room temperature. The presence of hydroxylamine greatly accelerated (e.g., 5-fold at 1 mM NH2OH) the dissociation. Under all conditions, the free, dissociated G-protein can reassociate to metarhodopsin II produced by subsequent bleaching. Dissociation of the metarhodopsin II-G-protein complex required the decay of photoproducts with a maximal absorbance of 380 nm, but was not affected by the simultaneous presence of metarhodopsin III or metarhodopsin III — like photoproducts with a maximal absorbance between 450 and 470 nm. Despite the acceleration of metarhodopsin II-G-protein dissociation by NH2OH, metarhodopsin II-G-protein was relatively stabilized as compared to free metarhodopsin II. The ratio of the decay rates of free metarhodopsin II and metarhodopsin III-G-protein was increased as much as 10-fold in the presence of 25 mM NH2OH. The results indicate a mutual interdependence of retinal, opsin and G-protein.  相似文献   

20.
The role of the putative fourth cytoplasmic loop of rhodopsin in the binding and catalytic activation of the heterotrimeric G protein, transducin (G(t)), is not well defined. We developed a novel assay to measure the ability of G(t), or G(t)-derived peptides, to inhibit the photoregeneration of rhodopsin from its active metarhodopsin II state. We show that a peptide corresponding to residues 340-350 of the alpha subunit of G(t), or a cysteinyl-thioetherfarnesyl peptide corresponding to residues 50-71 of the gamma subunit of G(t), are able to interact with metarhodopsin II and inhibit its photoconversion to rhodopsin. Alteration of the amino acid sequence of either peptide, or removal of the farnesyl group from the gamma-derived peptide, prevents inhibition. Mutation of the amino-terminal region of the fourth cytoplasmic loop of rhodopsin affects interaction with G(t) (Marin, E. P., Krishna, A. G., Zvyaga T. A., Isele, J., Siebert, F., and Sakmar, T. P. (2000) J. Biol. Chem. 275, 1930-1936). Here, we provide evidence that this segment of rhodopsin interacts with the carboxyl-terminal peptide of the alpha subunit of G(t). We propose that the amino-terminal region of the fourth cytoplasmic loop of rhodopsin is part of the binding site for the carboxyl terminus of the alpha subunit of G(t) and plays a role in the regulation of betagamma subunit binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号