首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MFE-CP is a recombinant antibody-enzyme fusion protein used for antibody-mediated delivery of an enzyme to cancer deposits. After clearance from normal tissues, the tumor-targeted enzyme is used to activate a subsequently administered prodrug to give a potent cytotoxic in the tumor. MFE-CP localizes to cancer deposits in vivo, but we propose that its therapeutic potential could be improved by N-glycosylation, obtained by expression in Pichia pastoris. Glycosylation could enhance clearance from healthy tissue and result in better tumor:normal tissue ratios. To test this, glycosylated MFE-CP was expressed and purified from P. pastoris. The resultant MFE-CP fusion protein was enzymatically active and showed enhanced clearance from normal tissues in vivo. Furthermore, it showed effective tumor localization. This favorable glycosylation pattern was analyzed by tandem mass spectrometry. High-resolution, high-detection sensitivity collision-induced dissociation experiments proved essential for this task. Results showed that of the three potential N-glycosylation sites only two were consistently occupied with oligomannose structures. Asn-442 appeared the most heterogeneously populated with oligomannose carbohydrates extending from 5 to 13 units in length. Asn-484 was found only in its nonglycosylated form. There was less heterogeneity at Asn-492, which was glycosylated with oligosaccharide structures ranging from 8 to 10 mannose units. Nonglycosylated forms of Asn-442 and Asn-492 were not observed.  相似文献   

2.
Antibody directed enzyme prodrug therapy (ADEPT) using glucuronide prodrugs is an experimental approach to reduce systemic toxicity of anti-cancer agents. Bioactivation of such prodrugs is achieved by fusion proteins consisting of targeting moieties (e.g. ligands of tumor specific antigens) and human beta-glucuronidase. In order to test a large panel of possible beta-glucuronidase fusion proteins for their applicability in ADEPT, an easy, rapid and high-yield expression system like the baculovirus/insect cell expression system would be needed. A prerequisite for using such fusion proteins is functional and biochemical characterization of human beta-glucuronidase expressed in baculovirus-infected insect cells. Therefore, recombinant human beta-glucuronidase was expressed in Sf9 insect cells and characterized at the protein and functional level. As shown by Western blot analysis the recombinant enzyme consists of dimers with their monomers being linked via disulfide bonds. Posttranslational modifications of the monomers seem to be different as compared with mammalian cells or tissues. The enzyme is functionally active in cleaving the substrates 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, 4-methylumbelliferyl-beta-D-glucuronide and the glucuronide prodrug HMR 1826, respectively, with similar enzyme kinetic parameters as those found in human tissues. Our data demonstrate that beta-glucuronidase expressed in Sf9 cells displays the same enzymatic features as the protein expressed in mammalian cells. Therefore, we suggest that beta-glucuronidase fusion proteins produced in this cell line will be valuable tools for testing a large panel of various targeting moieties in human tumor xenograft models or may be used for ADEPT in man.  相似文献   

3.
Antibodies are highly specific recognition molecules which are increasingly being applied to target therapy in patients. One type of developmental antibody-based therapy is antibody directed enzyme prodrug therapy (ADEPT) for the treatment of cancer. In ADEPT, an antibody specific to a tumor marker protein delivers a drug-activating enzyme to the cancer. Subsequent intravenous administration of an inactive prodrug results in drug activation and cytotoxicity only within the locale of the tumor. Pilot clinical trials with chemical conjugates of the prodrug activating enzyme carboxypeptidase G2 (CPG2) chemically conjugated with an antibody to and carcinoembryonic antigen (CEA), have shown that CPG2-mediated ADEPT is effective but limited by formation of human antibodies to CPG2 (HACA). We have developed a recombinant fusion protein (termed MFE-CP) of CPG2 with an anti-CEA single chain Fv antibody fragment and we have developed methods to address the immunogenicity of this therapeutic. A HACA-reactive discontinuous epitope on MFE-CP was identified using the crystal structure of CPG2, filamentous phage technology and surface enhanced laser desorption/ionization affinity mass spectrometry. This information was used to create a functional mutant of MFE-CP with a significant reduction (range 19.2 to 62.5%, median 38.5%) in reactivity with the sera of 11 patients with post-therapy HACA. The techniques described here are valuable tools for identifying and adapting undesirable immunogenic sites on protein therapeutics.  相似文献   

4.
Varner JD 《Systems biology》2005,152(4):291-302
Antibody-directed enzyme prodrug therapy (ADEPT) can generate highly localised concentrations of cytotoxic agents directly in a tumour, thereby reducing the collateral toxicity associated with normal tissue exposure. ADEPT is a two-component approach. First, a non-toxic antibody-enzyme fusion protein is localised in the tumour matrix by binding a specific antigen expressed only on the surface of a cancer cell. Once the fusion protein is bound, an inert small molecule prodrug is administered which is the substrate for the enzyme bound to the tumour surface. When the prodrug comes into contact with the bound enzyme, an active cytotoxic agent is generated. A multiple length-scale model of ADEPT therapy in solid tumours is presented. A four-compartment pharmacokinetic (PK) model is formulated where the tumour is comprised of interstitial and cell-surface subcompartments. The macroscopic PK model which describes the biodistribution of antibody-enzyme conjugate, prodrug and active drug at the largest length scale is coupled to a reaction-diffusion tumour model. The models are qualitatively validated against current literature and experimental understanding. The relationship between tumour localisation and the affinity of the antibody-enzyme conjugate for its surface antigen is explored by simulation. The influence of pharmacokinetic and biophysical parameters such as renal elimination rate and permeability of the tumour vasculature upon tumour uptake and retention of the fusion protein are also explored. Lastly, a technique for establishing an optimal prodrug dosing schedule is formulated and initial simulation results are presented.  相似文献   

5.
Antibody-directed enzyme prodrug therapy (ADEPT) has been studied in a human ovarian carcinoma xenograft grown subcutaneously in nude mice. Radioimmunoassay of supernatants obtained from tumor homogenates showed these to contain carcinoembryonic antigen (CEA). Biodistribution studies with125I-labeled monoclonal anti-CEA antibody, A5B7, and its F(ab′)2 fragment showed localization in these xenografts. The AB57-F(ab′)2 fragment conjugated to a bacterial enzyme, carboxypeptidase G2 (CPG2), and, radiolabeled with125iodine, also localized in the xenografts. The radiolabeled conjugate cleared from blood faster than the antibody alone. The percentage of injected dose per gram in tumor at 24 h postinjection was about fivefold lower than antibody alone. Tumor-to-blood ratio at 72 h after injection of the radiolabeled conjugate was 7 and the tumor-to-normal tissue ratios at this time point ranged from 20 (liver) to 75 (colon). A three-phase ADEPT antitumor study was carried out in which A5B7-F(ab′)2-CPG2 was allowed to localize and was followed by accelerated inactivation/clearance of blood CPG2 by a galactosylated anti-CPG2 antibody (SB43gal). A benzoic acid mustard-derived prodrug was injected 24 h after the conjugate, which led to growth delay in this tumor compared to the control untreated group. Further antitumor studies in this model are in progress.  相似文献   

6.
We have previously constructed an antibody-avidin (Av) fusion protein, anti-transferrin receptor (TfR) IgG3-Av, which can deliver biotinylated molecules to cells expressing the TfR. We now describe the use of the fusion protein for antibody-directed enzyme prodrug therapy (ADEPT). The 67 amino acid carboxyl-terminal domain (P67) of human propionyl-CoA carboxylase alpha subunit can be metabolically biotinylated at a fixed lysine residue. We genetically fused P67 to the carboxyl terminus of the yeast enzyme FCU1, a derivative of cytosine deaminase that can convert the non-toxic prodrug 5-fluorocytosine to the cytotoxic agent 5-fluorouracil. When produced in Escherichia coli cells overexpressing a biotin protein ligase, the FCU1-P67 fusion protein was efficiently mono-biotinylated. In the presence of 5-fluorocytosine, the biotinylated fusion protein conjugated to anti-rat TfR IgG3-Av efficiently killed rat Y3-Ag1.2.3 myeloma cells in vitro, while the same protein conjugated to an irrelevant (anti-dansyl) antibody fused to Av showed no cytotoxic effect. Efficient tumor cell killing was also observed when E. coli purine nucleoside phosphorylase was similarly targeted to the tumor cells in the presence of the prodrug 2-fluoro-2'-deoxyadenosine. These results suggest that when combined with P67-based biotinylation, anti-TfR IgG3-Av could serve as a universal delivery vector for targeted chemotherapy of cancer.  相似文献   

7.
5′-O-β-d-galactosyl-5-fluorouridine is a prodrug that can be converted by the enzyme β-d-galactosidase to the potent antineoplastic drug 5-fluorouridine. The prodrug is more than 100x less toxic than the drug to bone marrow cells in Balb/c mice. The ratio of the IC50 of the prodrug to that of the drug determined on a variety of tumor cell lines in vitro ranged from 500∶1–1000∶1. An antibody-enzyme conjugate (AEC) was synthesized and purified. Maleimide-substituted COL-1 anti-CEA monoclonal antibody was linked to free thiol groups of β-d-galactosidase. The conjugate was purified by size exclusion and ion exchange chromatography. It retained full immunoreactivity and enzyme activity. After binding to antigen-positive tumor cells, the conjugate was able to activate the prodrug and specifically kill the cells. We are continuing to investigate this model for its potential use in antibody-directed enzyme prodrug therapy (ADEPT).  相似文献   

8.
Heinis C  Alessi P  Neri D 《Biochemistry》2004,43(20):6293-6303
We present a new antibody-directed enzyme prodrug therapy strategy (ADEPT) based on a post-proline cleaving endopeptidase and prodrugs, in which cytotoxic moieties are linked to a proline-containing peptide. Human prolyl endopeptidase was expressed in Escherichia coli and purified to homogeneity. The enzyme was active in buffer and in human serum but was rapidly thermally inactivated by incubation at 37 degrees C, thus preventing applications in vivo. While prolyl endopeptidase display on filamentous phage abolished viral infectivity and prevented directed evolution strategies based on phage display, we robotically screened 10752 individual colonies of mutant enzymes using a fluorogenic assay to improve enzyme stability. A single amino acid mutation (Glu289 --> Gly) improved protein stability, resulting in a half-life of 16 h at 37 degrees C in phosphate buffer. Two prodrugs were synthesized, in which an N-protected glycine-proline dipeptide was covalently coupled to doxorubicin and melphalan. (Benzyloxycarbonyl)glycylprolylmelphalan, but not the more sterically hindered doxorubicin prodrug, could be efficiently activated by prolyl endopeptidase [specific activity = 813.3 nmol min(-1) (mg of enzyme)(-1) at 25 degrees C]. The melphalan prodrug was essentially nontoxic to CHO, F9 teratocarcinoma, MCF7 breast adenocarcinoma, and p3U1 mouse myeloma cells up to millimolar concentrations, while prodrug incubation with the engineered prolyl endopeptidase mutant led to a cell killing profile superimposable to the one of melphalan. The prolyl endopeptidase mutant was then chemically coupled to the human antibody L19, specific to the EDB domain of fibronectin, a marker of angiogenesis. The resulting immunoconjugate retains antigen binding and enzymatic activity, thus opening the way to anticancer ADEPT applications.  相似文献   

9.
Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.  相似文献   

10.
Antibody-directed enzyme prodrug therapy (ADEPT) utilizing β-glucuronidase is a promising method to enhance the therapeutic index of cancer chemotherapy. In this approach, an immunoenzyme (antibody-β-glucuronidase fusion protein) is employed to selectively activate anticancer glucuronide prodrugs in the tumor microenvironment. A major roadblock to the clinical translation of this therapeutic strategy, however, is the low enzymatic activity and strong immunogenicity of the current generation of immunoenzymes. To overcome this problem, we fused a humanized single-chain antibody (scFv) of mAb CC49 to S2, a human β-glucuronidase (hβG) variant that displays enhanced catalytic activity for prodrug hydrolysis. Here, we show that hcc49-S2 displayed 100-fold greater binding avidity than hcc49 scFv, possessed greater enzymatic activity than wild-type hβG, and more effectively killed antigen-positive cancer cells exposed to an anticancer glucuronide prodrug as compared to an analogous hβG immunoenzyme. Treatment of tumor-bearing mice with hcc49-S2 followed by prodrug significantly delayed tumor growth as compared to hcc49-hβG. Our study shows that hcc49-S2 is a promising targeted enzyme for cancer treatment and demonstrates that enhancement of human enzyme catalytic activity is a powerful approach to improve immunoenzyme efficacy.  相似文献   

11.
Antibody-directed enzyme prodrug therapy (ADEPT) separates the cytotoxic function from the targeting function (5). An antibody-carboxypeptidase G2 (CPG2) enzyme is delivered prior to the nontoxic prodrug, CMDA, which is converted to a cytotoxic drug by the action of the localized conjugate at the tumor site. An indirect in vitro assay was developed to detect the presence of functional CPG2 in the plasma of patients in an ADEPT clinical trial. Compounds in the plasma of patients were characterized using liquid chromatography-mass spectrometry. Plasma at three different time points (prior to treatment, post-antibody-enzyme conjugate, and post-galactosylated anti-enzyme antibody clearing agent) was added to the CMDA prodrug and analyzed. Conversion of the CMDA prodrug to its active drug indicates that CPG2-conjugate remains in the plasma. This technique will provide essential data for the timing of prodrug administration in ADEPT.  相似文献   

12.
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques.  相似文献   

13.
The F(ab’)2 fragment of the antitumor monoclonal antibody, A5B7, was covalently linked to the bacterial enzyme carboxypeptidase G2 (CPG2). The resulting conjugate was used in combination with a prodrug of a benzoic acid mustard alkylating agent to treat human colon tumor xenografts in a two-step targeting strategy, antibody-directed enzyme produrug therapy (ADEPT). The prodrug, 4-[(2-chloroethyl) (2-mesyloxyethyl) amino]-benzoyl-l-glutamic acid is rapidly converted by CPG2 to a drug that is at least 15x more toxic in vitro against LS174T colorectal tumor cells than the prodrug. Optimal tumor/ blood ratios of the A5B7-CPG2 were achieved 72 h after administration of the conjugate to athymic mice bearing established LS174T tumor xenografts. Significant antitumor activity was seen in LS174T tumor-bearing mice treated with the conjugate followed 3 d later by the prodrug. In contrast, prodrug, conjugate, or active drug alone did not result in any antitumor activity in this tumor model. These studies demonstrate the advantage of a two-step ADEPT system for the treatment of colorectal cancer.  相似文献   

14.
 We report the construction and expression of a fusion protein between a single-chain antibody specific for human carcinomas and human β-glucuronidase by recombinant DNA technology. The sequences encoding the murine monoclonal antibody 323/A3 light- and heavy-chain variable genes were joined by a synthetic sequence encoding a 15-amino-acid linker and combined with human β-glucuronidase by a synthetic sequence encoding a 6-amino-acid linker. The construct was placed under the control of the cytomegalovirus promotor and expressed in COS-7 cells. The yield of active fusion protein was 10 ng/ml transfectoma supernatant. Antibody affinity, antibody specificity and enzyme activity were fully retained by the fusion protein. Biochemical characterization of the fusion protein by sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed a molecular mass of 100 kDa under denaturing conditions. Gel-filtration analysis indicated that the enzymatically active form is a tetramer of approximately 400 kDa. The non-toxic prodrug N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate was activated to the cytotoxic drug doxorubicin by the fusion protein with a hydrolysis rate similar to that of human β-glucuronidase. The growth inhibition of tumor cells coated with the fusion protein and exposed to prodrug was similar to that obtained with doxorubicin. This study shows the feasibility of constructing eukaryotic fusion proteins consisting of a single-chain antibody and human β-glucuronidase for use in the specific activation of anticancer prodrugs. Received: 5 June 1997 / Accepted: 25 October 1997  相似文献   

15.
The beta-O-glucuronide and beta-O-galactoside of SAHA have been prepared and evaluated as prodrugs for selective cancer chemotherapy (ADEPT, PMT). These new compounds are stable under physiological conditions and do not exhibit any antiproliferative activity compared to the parent drug after a 48-h treatment of H661 cells. The glucuronide derivative did not lead to the release of the drug in the presence of either Escherichia coli or bovine liver beta-glucuronidase. On the other hand, under enzymatic cleavage of galactoside prodrug by the corresponding enzyme, a rapid release of SAHA was observed demonstrating that the beta-O-galactoside of SAHA is a promising candidate for in vivo investigations.  相似文献   

16.

Background

Enzyme prodrug therapy shows promise for the treatment of solid tumors, but current approaches lack effective/safe delivery strategies. To address this, we previously developed three enzyme-containing fusion proteins targeted via annexin V to phosphatidylserine exposed on the tumor vasculature and tumor cells, using the enzymes L-methioninase, purine nucleoside phosphorylase, or cytosine deaminase. In enzyme prodrug therapy, the fusion protein is allowed to bind to the tumor before a nontoxic drug precursor, a prodrug, is introduced. Upon interaction of the prodrug with the bound enzyme, an anticancer compound is formed, but only in the direct vicinity of the tumor, thereby mitigating the risk of side effects while creating high intratumoral drug concentrations. The applicability of these enzyme prodrug systems to treating prostate cancer has remained unexplored. Additionally, target availability may increase with the addition of low dose docetaxel treatment to the enzyme prodrug treatment, but this effect has not been previously investigated. To this end, we examined the binding strength and the cytotoxic efficacy (with and without docetaxel treatment) of these enzyme prodrug systems on the human prostate cancer cell line PC-3.

Results

All three fusion proteins exhibited strong binding; dissociation constants were 0.572 nM for L-methioninase-annexin V (MT-AV), 0.406 nM for purine nucleoside phosphorylase-annexin V (PNP-AV), and 0.061 nM for cytosine deaminase-annexin V (CD-AV). MT-AV produced up to 99% cell death (p < 0.001) with limited cytotoxicity of the prodrug alone. PNP-AV with docetaxel created up to 78% cell death (p < 0.001) with no cytotoxicity of the prodrug alone. CD-AV with docetaxel displayed up to 60% cell death (p < 0.001) with no cytotoxicity of the prodrug alone. Docetaxel treatment created significant increases in cytotoxicity for PNP-AV and CD-AV.

Conclusions

Strong binding of fusion proteins to the prostate cancer cells and effective cell killing suggest that the enzyme prodrug systems with MT-AV and PNP-AV may be effective treatment options. Additionally, low-dose docetaxel treatment was found to increase the cytotoxic effect of the annexin V-targeted therapeutics for the PNP-AV and CD-AV systems.  相似文献   

17.

Background and Purpose

The targeting of therapeutics is a promising approach for the development of new cancer treatments that seek to reduce the devastating side effects caused by the systemic administration of current drugs. This study evaluates a fusion protein developed as an enzyme prodrug therapy targeted to the tumor vasculature. Cytotoxicity would be localized to the site of the tumor using a protein fusion of purine nucleoside phosphorylase (PNP) and annexin V. Annexin V acts as the tumor-targeting component of the fusion protein as it has been shown to bind to phosphatidylserine expressed externally on cancer cells and the endothelial cells of the tumor vasculature, but not normal vascular endothelial cells. The enzymatic component of the fusion, PNP, converts the FDA-approved cancer therapeutic, fludarabine, into a more cytotoxic form. The purpose of this study is to determine if this system has a good potential as a targeted therapy for breast cancer.

Methods

A fusion of E. coli purine nucleoside phosphorylase and human annexin V was produced in E. coli and purified. Using human breast cancer cell lines MCF-7 and MDA-MB-231 and non-confluent human endothelial cells grown in vitro, the binding strength of the fusion protein and the cytotoxicity of the enzyme prodrug system were determined. Endothelial cells that are not confluent expose phosphatidylserine and therefore mimic the tumor vasculature.

Results

The purified recombinant fusion protein had good enzymatic activity and strong binding to the three cell lines. There was significant cell killing (p<0.001) by the enzyme prodrug treatment for all three cell lines, with greater than 80% cytotoxicity obtained after 6 days of treatment.

Conclusion

These results suggest that this treatment could be useful as a targeted therapy for breast cancer.  相似文献   

18.
The ideal therapy would target cancer cells while sparing normal tissue. However, in most conventional chemotherapies normal cells are damaged together with cancer cells resulting in the unfortunate side effects. The principle underlying enzyme/prodrug therapy is that a prodrug-activating enzyme is delivered or expressed in tumor tissue following which a non-toxic prodrug is administered systemically. Non-invasive imaging modalities can fill an important niche in guiding prodrug administration when the enzyme concentration is detected to be high in the tumor tissue but low in the normal tissue. Therefore, high therapeutic efficacy with minimized toxic effect can be anticipated. This review introduces the latest developments of molecular imaging in enzyme/prodrug cancer therapies. We focus on the application of imaging modalities including magnetic resonance imaging, position emission tomography and optical imaging in monitoring the enzyme delivery/expression, guiding the prodrug administration and evaluating the real-time therapeutic response in vivo.  相似文献   

19.
Galactosylated and mannosylated liposomes were more efficient in transporting liposome-entrapped beta-glucocerebrosidase to liver compared to nonglycosylated liposomes. The enzyme entrapped to glycoside-bearing liposomes was found to be cleared at a much faster rate than that entrapped in liposomes having no sugar on their surface. Asialoorosomucoid and hydrolyzed mannan were found to inhibit both the clearance and the uptake of galactosylated and mannosylated liposomes, respectively, supporting involvement of lectin-sugar interaction. Further studies on the uptake of glucocerebrosidase by isolated liver cells revealed that the enzyme entrapped in mannosylated liposomes has much higher affinity for nonparenchymal cells whereas the assimilation of the entrapped enzyme into hepatocytes is clearly favored for liposomes having galactose on their surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号