首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We demonstrated previously that 69- and 82-kDa human choline acetyltransferase are localized predominantly to the cytoplasm and the nucleus, respectively. We have now identified a nuclear localization signal common to both forms of enzyme using confocal microscopy to study the subcellular compartmentalization of choline acetyltransferase tagged with green fluorescent protein in living HEK 293 cells. To identify functional nuclear localization and export signals, portions of full-length 69-kDa choline acetyltransferase were cloned into the vector peGFP-N1 and the cellular distribution patterns of the fusion proteins observed. Of the nine constructs studied, one yielded a protein with nuclear localization and another produced a protein with cytoplasmic localization. Mutation of the critical amino acids in this novel putative nuclear localization signal in the 69- and 82-kDa enzymes demonstrated that it is functional in both proteins. Moreover, 69-kDa choline acetyltransferase but not the 82-kDa enzyme is transported out of the nucleus by the leptomycin B-sensitive Crm-1 export pathway. By using bikaryon cells expressing both 82-kDa choline acetyltransferase and the nuclear protein heterogeneous nuclear ribonucleoprotein with green and red fluorescent tags, respectively, we found that the 82-kDa enzyme does not shuttle out of the nucleus in measurable amounts. These data suggest that 69-kDa choline acetyltransferase is a nucleocytoplasmic shuttling protein with a predominantly cytoplasmic localization determined by a functional nuclear localization signal and unidentified putative nuclear export signal. For 82-kDa choline acetyltransferase, the presence of the unique amino-terminal nuclear localization signal plus the newly identified nuclear localization signal may be involved in a process leading to predominantly nuclear accumulation of this enzyme, or alternatively, the two nuclear localization signals may be sufficient to overcome the force(s) driving nuclear export.  相似文献   

3.
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab E2-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS--albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small non-nuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase δ. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

5.
The relative rate of synthesis of a number of proteins and the protein phosphorylation pattern of growing and fully grown oocytes were influenced by the presence of granulosa cells. In particular, a 74-kDa phosphorylated protein was detected only in granulosa cell-enclosed growing mouse oocytes. When reaggregated with granulosa cells, the growing oocyte displayed the phosphorylated form of the 74-kDa protein but when oocytes were cultured on Sertoli cell monolayers or in granulosa cell-conditioned medium the 74-kDa protein was not phosphorylated. We propose that (1) granulosa cells regulate protein phosphorylation in mouse oocytes; (2) a 74-kDa protein is phosphorylated only in growing oocytes when surrounded by granulosa cells; and (3) granulosa cells, but not Sertoli cells, are competent to send the appropriate "signal" to the growing oocyte.  相似文献   

6.
In vivo cold stress was found to induce characteristic changes in the protein synthesis pattern of Pleurodeles waltl oocytes, as analyzed by two-dimensional gel electrophoresis. The nature of the response varied with the duration and intensity of stress. After a short period of cold stress (12 h at 8°C), synthesis and intracellular distribution of polypeptides were dramatically disturbed. There occured: 1) a reduction in synthesis of several polypeptides, including two major polypeptides (54-kDa and 47-kDa); 2) changes in distribution of polypeptides in oocyte, ie some polypeptides (185- and 96-kDa) were blocked in the cytoplasm, while other polypeptides (82-, 74-, 72- and 68-kDa, actin and nucleoplasmin) continued to enter the nucleus, but were quantitatively reduced; 3) no changes in the distribution of two nuclear polypeptides (53- and 43-kDa); 4) changes in the relative quantities of β- and γ-actin and preferential migration of γ-actin towards the nucleus. After a long period of in vivo cold stress (5 days at 8°C), we noted a partial recuperation of synthesis and nuclear migration (except for a 96-kDa polypeptide), but a persistent perturbation at the level of actin. For more drastic stress conditions (4°C), such a recuperation of protein synthesis was never observed.  相似文献   

7.
Detergent-free discontinuous sucrose density gradient centrifugation was used to resolve low- and high-density membrane fractions from Xenopus laevis oocytes. Compared to high-density membrane, low-density oocyte membrane is enriched two-fold in cholesterol and highly enriched in ganglioside GM1. Protein immunoblotting of membrane fractions from whole cells with polyclonal anti-human caveolin antibody detected multiple bands, including a distinctive triad with apparent molecular weights of 21, 33, and 48 kDa. To more clearly determine which of these caveolin-like protein(s) is associated with the oocyte plasma membrane, microdissection was used to separate external membrane (cortical preparations containing plasma membrane) from intracellular membrane. Cortical membrane preparations displayed a single 21-kDa caveolin-like protein in low-density membrane. Internal oocyte membrane displayed the higher molecular weight bands of 33 and 48 kDa and a lesser amount of the 21-kDa protein in low-density membrane fractions. Monoclonal anti-human Ras antibody detected a single 23-kDa immunoblot band that is enriched an average of eight-fold in low-density membrane fractions prepared from whole cells. This is the first report of caveolin-associated, low-density membrane in amphibian oocytes, and is consistent with a role for caveolin and caveolae-like microdomains in oocyte signal transduction.  相似文献   

8.
In the laying hen, two different receptors for apolipoprotein B (apoB)-containing lipoproteins are expressed on somatic cells and oocytes, respectively. The somatic protein has an apparent Mr of 130,000, while the oocyte receptor is a 95-kDa protein (1989. K. Hayashi, J. Nimpf, and W. J. Schneider, J. Biol. Chem. 264:3131-3139). In order to investigate the yet unresolved relationship between these two proteins, we applied immunoblotting with anti-receptor antibodies to extracts of oocytes and chicken embryo fibroblasts. IgG fractions that recognize the 95-kDa oocyte receptor did not cross-react with the somatic receptor; however, chicken fibroblasts as well as ovarian granulosa cells that had been exposed to sterols (cholesterol and 25-OH-cholesterol) or low density lipoprotein (LDL) were shown to express a novel immunoreactive protein with an apparent Mr of 110,000. This protein is localized on the cell surface, and is unable to bind apoB-containing lipoproteins. The formation of the 110-kDa protein in fibroblasts is induced in time- and concentration-dependent fashion by sterols, concomitant with a progressive decrease in the amount of functional 130-kDa receptor protein. Following its induction, exposure of cells to LDL, but not to high density lipoprotein, caused the disappearance of the immunoreactive protein. Furthermore, the production of the 110-kDa protein did not require protein synthesis. These data are compatible with the notion that this novel receptor-related, nonfunctional protein is a truncated intermediate in the degradation pathway for the 130-kDa apoB receptor, and that the truncation generates antigenic epitope(s) shared by the 95-kDa oocyte receptor and the 110-kDa protein, but not expressed on the somatic receptor.  相似文献   

9.
This paper reports the nucleotide and predicted amino acid sequences of the goldfish cdk2, a cognate variant of the cell cycle regulator cdc2. The predicted protein sequence shows strong homology to the other known cdk2 (88% for Xenopus and 90% for human). A monoclonal antibody against the C-terminal sequence of goldfish cdk2 recognized a 34-kDa protein in extracts from various goldfish tissues. The protein level was high in such tissues as testis and ovary containing actively dividing cells. Protein cdk2 binds to p13sucl, the fission yeast suc1+ gene product, but not to cyclin B, with which cdc2 forms a complex. The kinase activity of cdk2 increased 30-fold when oocytes matured, although its protein level did not remarkably change. Anti-cdk2 immunoprecipitates from 32P-labeled mature oocyte extracts contained a 47-kDa protein, which was not recognized by either anti-cyclin A or anti-cyclin B antibody, indicating complex formation of cdk2 with a protein other than cyclins A or B.  相似文献   

10.
Changes in the amount of heat shock-related ubiquitinated proteins in Chlamydomonas were investigated during the cell cycle and gamete induction. In a division-synchronized culture induced by periodic illumination, the amount of the 28-kDa ubiquitinated protein increased during the dark phase. This increase correlated with the increase of total DNA. Such an increase was repressed when nuclear DNA replication was inhibited with aphidicolin. These results suggest that ubiquitination to form the 28-kDa protein is involved in nuclear DNA replication or during the cell cycle. The amount of 31-kDa ubiquitinated protein gradually increased throughout the light phase and decreased in the dark phase. The amount of 28-kDa ubiquitinated protein also increased during gamete induction caused by nitrogen starvation, while that of the 31-kDa did not. These results suggest that the change of ubiquitination of 28-kDa protein mat play a fundamental role in the cell cycle and gamete induction in Chlamydomonas.  相似文献   

11.
The ADP-ribosyl moiety of NAD was transferred to a 40-kDa protein when rat liver nuclei were incubated with pertussis toxin. The 40-kDa substrate in the nuclei displayed unique properties as follows, some of which were apparently distinct from those observed with the toxin-substrate GTP-binding protein (Gi) in the liver plasma membranes. 1) The nuclear 40-kDa protein was recognized with antibodies reacting with the alpha-subunits (alpha i-1 and alpha i-2) of Gi, but not with anti-Go-alpha-subunit antibody. 2) The nuclear protein had a higher mobility than alpha-subunit of the plasma membrane-bound Gi upon electrophoresis with a urea/sodium dodecyl sulfate-containing polyacrylamide gel. 3) The nuclear protein was not extracted from the nuclei with 1% Triton X-100, whereas Gi was easily solubilized from the plasma membranes. 4) There was a beta gamma-subunit-like activity in the nuclei, which was assayed by an ability to support pertussis toxin-catalyzed ADP-ribosylation of a purified alpha-subunit of Gi. Moreover, a 36-kDa protein in the nuclei was recognized with antibody raised against purified beta-subunits of Gi. 5) Pertussis toxin-induced ADP-ribosylation of the nuclear protein was selectively inhibited by the addition of a nonhydrolyzable GTP analogue, and its inhibitory action was competitively blocked by the simultaneous addition of GDP or its analogues, as had been observed with plasma membrane-bound Gi. It thus appeared that a novel form of alpha beta gamma-trimeric GTP-binding protein serving as the substrate of pertussis toxin was present in rat liver nuclei. In order to examine a possible role of the nuclear GTP-binding protein, rats were injected with carbon tetrachloride, a necrosis inducer of hepatocytes. There was a marked increase in the nuclear substrate activity from 3-6 days after the injection, without a significant change in the activity of Gi in the plasma membranes. The time course of the increase corresponded with a recovering stage from the hepatocyte necrosis. These results suggested that the nuclear GTP-binding protein found in the present study might be involved at some stages in the hepatocyte growth.  相似文献   

12.
13.
Summary

1-Methyladenine (1-MA) secreted from the follicle cells is the biological signal for meiosis reinitiation of starfish oocytes. The signal of-1-MA is transduced into cytoplasmic formation of maturation-promoting factor (MPF) that eventually induces a germinal vesicle breakdown (GVBD). Microinjection of pertussis toxin (PTX) inhibited 1-MA-induced GVBD in Asterina pectinifera and Asterina (Patina) miniata. PTX-inhibition of GVBD was rescued by the injection of MPF into PTX-preinjected oocytes. Most of the PTX- and MPF-double injected eggs were fertilized and underwent cleavage, suggesting the presence of a GTP-binding protein (G protein) specific for 1-MA signal transduction. Indeed, plasma membrane preparations of A. pectinifera oocytes contained a G protein consisting of 39-kDa α, 37-kDa β, and 8-kDa γ subunits. The α subunit contained a site for ADP-ribosylation catalyzed by PTX. It was also recognized by antibodies specific for a common GTP-binding site of mammalian α subunits or a carboxy-terminal ADP-ribosylation site of mammalian inhibitory G protein (Gi) α subunits. Its gene was 74% and 83.7% identical to the rat Gi-2α gene in nucleotide and deduced amino acid sequences, respectively. The 39-kDa α subunit shared the common GTP-binding site of mammalian G protein α subunits and the PTX-catalyzed ADP-ribosylation site of mammalian Gi α subunits as expected from the immunoreactivity. The oocyte membranes had apparently two forms of 1-MA receptors with high and low affinities. The high-affinity form was converted into the low-affinity one in the presence of a non-hydrolyzable analogue of GTP. The 39-kDa α subunit of starfish G protein was also ADP-ribosylated by cholera toxin only when 1-MA was added to the membranes. These results indicate that in starfish oocyte membranes, 1-MA receptors are functionally coupled with the 39-kDa PTX-substrate G protein that transduces the signal into the formation of a cytoplasmic factor (MPF) and eventually into the reinitiation of meiosis.  相似文献   

14.
A 100-kDa DNA binding protein was found to be dramatically up-regulated upon the mitogenic stimulation of murine splenocytes with bacterial lipopolysaccharide (LPS). The induced DNA binding protein was also found to exhibit moderate binding specificity for the immunoglobulin isotype switch DNA repeats. Furthermore, the induction of the 100-kDa protein by LPS was found to be mediated by both an increase in the protein's stability and an increase in the synthesis of the protein. In vitro phosphorylation experiments revealed that the 100-kDa DNA binding protein was one of the most heavily phosphorylated proteins in both lymphoid and nonlymphoid nuclear extracts. Although this in vitro phosphorylation initially appeared to be mediated by a potent nuclear kinase activity, it was later determined that a significant part of the detected labeling was due to the direct binding of ATP by the 100-kDa protein. Antibodies raised to the 100-kDa DNA binding protein were used to isolate cDNA clones from a lymphocyte cDNA λgt11 expression library. Nucleotide sequence analysis revealed that the cloned cDNAs were identical to the mouse nucleolin gene. The β-galactosidase fusion proteins (encoded by exons 3-14 of nucleolin) and a more severely truncated 45-kDa protein (encoded by exons 5-14 of nucleolin) were both found to bind strongly to DNA and ATP. Furthermore, the strength of DNA binding was found to be highly dependent on the overall dG content of the DNA probes. Our experiments also revealed that apart from binding ATP and G-rich DNA, nucleolin directly bound GTP, dATP, and dGTP, but not dCTP, dTTP, or dUTP. Computer analysis revealed that the putative ATP binding domains appear to fall within two of the phylogenetically conserved RNA binding domains of nucleolin.  相似文献   

15.
Midkine (MK) is a heparin binding multifunctional protein that promotes cell survival and cell migration. MK was found to bind to 37-kDa laminin binding protein precursor (LBP), a precursor of 67-kDa laminin receptor, with K(d) of 1.1 nM between MK and LBP-glutathione-S-transferase fusion protein. The binding was inhibited by laminin, anti-LBP, amyloid beta-peptide, and heparin; the latter two are known to bind to MK. In CMT-93 mouse rectal carcinoma cells, LBP was mostly located in the cytoplasm as revealed by immunostaining with anti-LBP antibody. That a portion of LBP or 67-kDa laminin receptor was located at the surface of these cells was verified by inhibition of cell attachment to laminin-coated dishes by anti-LBP antibody. When MK was added to culture medium of these cells, a part of LBP migrated to the nucleus. The movement occurred concomitantly with nuclear transport of biotin-labeled MK. These findings suggested that the binding of MK to LBP caused nuclear translocation of the molecular complex.  相似文献   

16.
We previously obtained a monoclonal antibody (Th-10a mAb) that recognizes a single 95-kDa mouse nuclear protein (NP95). Immunostaining analyses revealed that the NP95 was specifically stained in the S phase of normal mouse thymocytes. In contrast, mouse T cell lymphoma cells exhibited a constantly high level of NP95 accumulation irrespective of cell stages during the cell cycle. In the present study, we isolated the cDNA encoding the NP95 from a λgt-11 cDNA expression library, using the Th-10a mAb. Sequencing of the whole 3.5-kb cDNA revealed that NP95 is a novel nuclear protein with an open reading frame (ORF) consisting of 782 amino acids. The ORF contains a zinc finger motif, a potential ATP/GTP binding site, a putative cyclin A/E-cdk2 phosphorylation site, and the retinoblastoma protein (RB)-binding motif ``IXCXE'. The chromosomal location of Np95 gene was determined by fluorescence in situ hybridization. Np95 gene locates on mouse Chromosome (Chr) 17DE1.1. and rat Chr 9q11.2–q12.1. Np95 was strongly expressed in the testis, spleen, thymus, and lung tissues, but not in the brain, liver, or skeletal muscles. These results collectively implicate this novel nuclear protein in cell cycle progression and/or DNA replication. Received: 24 June 1998 / Accepted: 12 August 1998  相似文献   

17.
Goldfish Carassius auratus were acclimated to either 10 or 30°C for a minimum of 5 weeks. A 65-kDa protein specific to warm-temperature-acclimated fish was extracted from the gel with 70% formic acid after two-dimensional electrophoresis of the muscle cytoplasmic protein fraction. The 65-kDa protein thus prepared to homogeneity was used to raise specific antibodies in rabbit by conventional methods. The antibody produced exhibited specific reaction with a protein having the same molecular weight from brain and liver tissue, suggesting that the 65-kDa protein is a ubiquitous cytosolic component in warm-acclimated goldfish. When water temperature was increased from 20 to 30°C over a 20-h period, a prominent amount of the 65-kDa protein was observed in muscle tissue extracts within 5 days of additional rearing; this was demonstrated by immunoblotting with the specific antibody. The N-terminal amino acid sequence of the 65-kDa protein was determined as Asp-Glu-Pro-Gln-Gly-His-Gln-His (or Asp)-Glu-Leu, differing from that of a family of known heat-shock proteins having about 70 kDa in molecular mass (hsp 70). No interaction between ATP and the 65-kDa protein revealed by ATP-agarose affinity chromatography further confirmed the different properties of the 65-kDa protein from those of hsp 70.Abbreviations ATP adenosine 5-triphosphate - hsp heat-shock protein(s) - IgG immunoglobulin G - mRNA messenger ribonucleic acid - PMSF phenylmethylsulphonyl fluoride - PVDF polyvinylidene difluoride - SDS sodium dodecyl sulphate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

18.
Progesterone (P(4)) inhibits granulosa cell apoptosis in a steroid-specific, dose-dependent manner, but these cells do not express the classic nuclear P(4) receptor. It has been proposed that P(4) mediates its action through a 60-kDa protein that functions as a membrane receptor. The present studies were designed to determine the P(4) binding characteristics of this protein. Western blot analysis using an antibody that recognizes the P(4) binding site of the nuclear P(4) receptor (C-262) confirmed that the 60-kDa protein was localized to the plasma membrane of both granulosa cells and spontaneously immortalized granulosa cells (SIGCs). To determine whether this protein binds P(4), proteins were immunoprecipitated with the C-262 antibody, electrophoresed, transferred to nitrocellulose, and probed with a horseradish peroxidase-labeled P(4) in the presence or absence of nonlabeled P(4). This study demonstrated that the 60-kDa protein specifically binds P(4). Scatchard plot analysis revealed that (3)H-P(4) binds to a single site (i.e., single protein), which is relatively abundant (200 pmol/mg) with a K(d) of 360 nM. (3)H-P(4) binding was not reduced by dexamethasone, mifepristone (RU 486), or onapristone (ZK98299). Further studies with SIGCs showed that P(4) inhibited apoptosis and mitogen-activated protein kinase kinase (MEK) activity, and maintained calcium homeostasis. These studies taken together support the concept that the 60-kDa P(4) binding protein functions as a low-affinity, high-capacity membrane receptor for P(4).  相似文献   

19.
Whole-mounts of Drosophila embryos were stained with the monoclonal antibody Vmp 18, raised against the peptide 199–208 of murine interleukin 1/. Immunofluorescence observations showed that the antibody cross-reacted with an antigenic determinant that changed in localization during Drosophila development. In syncytial Drosophila embryos, the antibody recognized an epitope localized on the nuclear envelope throughout mitotic division. As cellularization occurred, the fluorescence was mainly concentrated in the apical region of the blastoderm cells. Western blot analysis of whole Drosophila embryo extracts showed that the antibody recognized a 60-kDa protein in syncytial embryos and during germ band elongation. This suggests that the 60-kDa antigen undergoes dynamic redistribution during embryogenesis.This work was supported in parts by grants from the Italian MURST (40% and 60% funds) and from the Consorzio Siena Ricerche  相似文献   

20.
Summary The distribution of a nuclear antigen ofPleurodeles waltl oocytes, recognized by the monoclonal antibody B24/1, has been studied during oogenesis and early embryonic development. In stage I oocytes the antigen was localized in the nucleoplasm and on two atypical structures of lampbrush chromosomes, the spheres (S) and the mass (M). The immunostaining increased as the oocyte developed. In stage VI oocytes, the nucleoplasm and spheres showed intense staining. At this stage, the nucleoplasm often contained free spheres which were also labelled. The staining of M diminished during oogenesis, as did its size. Immunoblots of nuclear proteins of oocytes at different stages confirmed that there was an accumulation of this protein during oogenesis. During embryonic development, the nuclei of all the cells of blastula and gastrula were labelled by this antibody: there was no embryonic regionalization. Starting from the neurula stage, the staining progressively disappeared from the nuclei of ectodermal and mesodermal cells. In the tailbud stage, only the endodermal cell nuclei showed faint staining. Immunoblots of proteins from embryos of different stages showed that the quantity of this protein was constant until the young gastrula stage and then decreased progressively; in the young tailbud stage, this protein was practically absent. B24/1 is the first described protein of the sphere. This protein is accumulated in the oocyte nucleus and behaves like a maternal polypeptide, shifting early in the nuclei during embryonic development. Thus, B24/1 probably has a function required from the early developmental stages, perhaps in relation with small nuclear ribonucleoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号