首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fomin  E. S.  Ivanisenko  V. A. 《Biophysics》2008,51(1):35-38

Our earlier suggestion that the G245C mutation in p53 generates an additional zinc binding site, overlapping with the normal zinc binding site, has been supported by molecular modeling. The energy of interaction between a zinc ion and the new site in the G245 mutant is comparable to that for the normal site in wild-type p53. The presence of the additional site in the mutant can distort its conformation when it interacts with DNA. Effects of other mutations on the energy of zinc binding to the normal site have been calculated.

  相似文献   

2.
3.
4.
5.
6.
Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.  相似文献   

7.
8.
9.
10.
11.
It is known that p53 alterations are commonly found in tumour cells. Another marker of tumorigenesis is FAK (focal adhesion kinase), a non-receptor kinase that is overexpressed in many types of tumours. Previously we determined that the N-terminal domain of FAK physically interacted with the N-terminal domain of p53. In the present study, using phage display, sitedirected mutagenesis, pulldown and immunoprecipitation assays we localized the site of FAK binding to a 7-amino-acid region(amino acids 65-71) in the N-terminal proline-rich domain of human p53. Mutation of the binding site in p53 reversed the suppressive effect of FAK on p53-mediated transactivation ofp21, BAX (Bcl-2-associated X protein) and Mdm2 (murine double minute 2) promoters. In addition, to functionally test this p53 site, we conjugated p53 peptides [wild-type (containing the wild-type binding site) and mutant (with a mutated 7-aminoacid binding site)] to a TAT peptide sequence to penetrate the cells, and demonstrated that the wild-type p53 peptide disrupted binding of FAK and p53 proteins and significantly inhibited cell viability of HCT116 p53+/+ cells compared with the control mutant peptide and HCT116 p53-/- cells. Furthermore, the TAT-p53 peptide decreased the viability of MCF-7 cells, whereas the mutant peptide did not cause this effect. Normal fibroblast p53+/+ and p53-/- MEF (murine embryonic fibroblast) cells and breast MCF10A cells were not sensitive to p53 peptide. Thus, for the first time, we have identified the binding site of the p53 andFAK interaction and have demonstrated that mutating this site and targeting the site with peptides affects p53 functioning and viability in the cells.  相似文献   

12.
13.
The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. Cancer-related mutations in the human p53 protein tend to cluster in four of the five highly conserved domains of the protein, and, in particular, in the central region of domain IV from residues 241 to 253. Using conformational energy analysis based on ECEPP (Empirical Conformational Energies for Polypeptides Program), we have determined the preferred three dimensional structures for this tridecapeptide sequence for the human wild-type p53 protein and four cancer-related mutant p53 proteins (Ala 245, Ile 246, Trp 248, Ser 249). The results show that the mutant peptides adopt conformations that are distinctly different from that of the wild-type peptide. These results are consistent with experimental conformational studies demonstrating altered detectability of antigenic epitopes in murine wild-type and mutant p53 proteins. These results suggest that the oncogenic effects of human mutant p53 proteins may be mediated by distinct local conformational changes in the protein.  相似文献   

14.
The core domain of p53 is extremely susceptible to mutations that lead to loss of function. We analysed the stability and DNA-binding activity of such mutants to understand the mechanism of second-site suppressor mutations. Double-mutant cycles show that N239Y and N268D act as 'global stability' suppressors by increasing the stability of the cancer mutants G245S and V143A-the free energy changes are additive. Conversely, the suppressor H168R is specific for the R249S mutation: despite destabilizing wild type, H168R has virtually no effect on the stability of R249S, but restores its binding affinity for the gadd45 promoter. NMR structural comparisons of R249S/H168R and R249S/T123A/H168R with wild type and R249S show that H168R reverts some of the structural changes induced by R249S. These results have implications for possible drug therapy to restore the function of tumorigenic mutants of p53: the function of mutants such as V143A and G245S is theoretically possible to restore by small molecules that simply bind to and hence stabilize the native structure, whereas R249S requires alteration of its mutant native structure.  相似文献   

15.
The mutation of R273→H in the p53 core domain (p53-CD) is one of the most common mutations found in human cancers. Although the 273H p53-CD retains the wild-type conformation and stability, it lacks sequence-specific DNA binding, a transactivation function and growth suppression. However, mutating T284→R in the 273H p53-CD restores the DNA binding affinity, and transactivation and tumour suppressor functions. Since X-ray/NMR structures of DNA-free or DNA-bound mutant p53-CD molecules are unavailable, the factors governing the loss and rescue of sequence-specific DNA binding in the 273H and 273H+284R p53-CD, respectively, are unclear. Hence, we have carried out molecular dynamics (MD) simulations of the wild-type, single mutant and double mutant p53-CD, free and DNA bound, in the presence of explicit water molecules. Based on the MD structures, the DNA-binding free energy of each p53 molecule has been computed and decomposed into component energies and contributions from the interface residues. The wild-type and mutant p53-CD MD structures were found to be consistent with the antibody-binding, X-ray and NMR data. The predicted DNA binding affinity and specificity of both mutant p53-CDs were also in accord with experimental data. The non-detectable DNA binding of the 273H p53-CD is due mainly to the disruption of a hydrogen-bonding network involving R273, D281 and R280, leading to a loss of major groove binding by R280 and K120. The restoration of DNA binding affinity and specificity of the 273H+284R p53-CD is due mainly to the introduction of another DNA-binding site at position 284, leading to a recovery of major groove binding by R280 and K120. The important role of water molecules and the DNA major groove conformation as well as implications for structure-based linker rescue of the 273H p53-CD DNA-binding affinity are discussed.  相似文献   

16.
17.

Background

TP53 gene mutations occur in more than 50% of human cancers and the vast majority of these mutations in human cancers are missense mutations, which broadly occur in DNA binding domain (DBD) (Amino acids 102–292) and mainly reside in six “hotspot” residues. TP53 G245C and R273H point mutations are two of the most frequent mutations in tumors and have been verified in several different cancers. In the previous study of the whole genome sequencing (WGS), we found some mutations of TP53 DBD in esophageal squamous cell carcinoma (ESCC) clinical samples. We focused on two high-frequent mutations TP53 p.G245C and TP53 p.R273H and investigated their oncogenic roles in ESCC cell lines, p53-defective cell lines H1299 and HCT116 p53?/?.

Results

MTS and colony formation assays showed that mutant TP53 G245C and R273H increased cell vitality and proliferation. Flow cytometry results revealed inhibition of ultraviolet radiation (UV)- and ionizing radiation (IR)- induced apoptosis and disruption of TP53-mediated cell cycle arrest after UV, IR and Nocodazole treatment. Transwell assays indicated that mutant TP53 G245C and R273H enhanced cell migration and invasion abilities. Moreover, western blot revealed that they were able to suppress the expression of TP53 downstream genes in the process of apoptosis and cell cycle arrest induced by UV, which suggests that these two mutations can influence apoptosis and growth arrest might be due, at least in part, to down-regulate the expression of P21, GADD45α and PARP.

Conclusions

These results indicate that mutant TP53 G245C and R273H can lead to more aggressive phenotypes and enhance cancer cell malignancy, which further uncover TP53 function in carcinogenesis and might be useful in clinical diagnosis and therapy of TP53 mutant cancers.
  相似文献   

18.
A synthetic 22-mer peptide (peptide 46) derived from the p53 C-terminal domain can restore the growth suppressor function of mutant p53 proteins in human tumor cells (G. Selivanova et al., Nat. Med. 3:632-638, 1997). Here we demonstrate that peptide 46 binds mutant p53. Peptide 46 binding sites were found within both the core and C-terminal domains of p53. Lys residues within the peptide were critical for both p53 activation and core domain binding. The sequence-specific DNA binding of isolated tumor-derived mutant p53 core domains was restored by a C-terminal polypeptide. Our results indicate that C-terminal peptide binding to the core domain activates p53 through displacement of the negative regulatory C-terminal domain. Furthermore, stabilization of the core domain structure and/or establishment of novel DNA contacts may contribute to the reactivation of mutant p53. These findings should facilitate the design of p53-reactivating drugs for cancer therapy.  相似文献   

19.
The involvement of p53 and p21 signal pathway in the G2/M cell cycle progression of zinc-supplemented normal human bronchial epithelial (NHBE) cells was examined using the small interferring RNA (siRNA) approach. Cells were cultured for one passage in a different concentration of zinc: <0.4 microM (ZD) as zinc deficient; 4 microM as normal zinc level (ZN) in culture medium; 16 microM (ZA) as normal human plasma zinc level; and 32 microM (ZS) as the high end of plasma zinc attainable by oral supplementation. Nuclear p21 protein and mRNA levels as well as promoter activity in ZS cells, but not in ZD cells, were markedly elevated to almost twofold compared with ZN control cells. G2/M blockage in ZS cells was coupled with the observation of elevated p21 gene expression. In ZS cells, the abrogation of p21 protein induction by the transfection of p21 siRNA was shown to alleviate the G2/M blockage, demonstrating the positive linkage of p21 elevation and G2/M blockage. Abolishment of the increase in p53 protein in ZS cells with transfection of p53 siRNA normalized the elevated p21 protein to a similar level as in ZN control cells, which demonstrated that the p21 induction is p53 dependent. Furthermore, the normalization of p53 protein by siRNA treatment in ZS cells alleviated cell growth depression and G2/M blockage, which demonstrated that p53 was involved in the high zinc status-induced G2/M blockage and growth depression. Thus high zinc status in NHBE cells upregulates p53 expression which in turn elevates p21 that eventually induces G2/M blockage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号