首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 105 cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.  相似文献   

3.
4.
The stimulation of myocardium repair is restricted due to the limited understanding of heart regeneration. Interestingly, endogenous opioid peptides such as dynorphins and enkephalins are suggested to support this process. However, the mechanism—whether through the stimulation of the regenerative capacity of cardiac stem cells or through effects on other cell types in the heart—is still not completely understood. Thus, a model of the spontaneous cardiomyogenic differentiation of mouse embryonic stem (mES) cells via the formation of embryoid bodies was used to describe changes in the expression and localization of opioid receptors within cells during the differentiation process and the potential of the selected opioid peptides, dynorphin A and B, and methionin-enkephalins and leucin-enkephalins, to modulate cardiomyogenic differentiation in vitro. The expressions of both κ- and δ-opioid receptors significantly increased during mES cell differentiation. Moreover, their primary colocalization with the nucleus was followed by their growing presence on the cytoplasmic membrane with increasing mES cell differentiation status. Interestingly, dynorphin B enhanced the downregulation gene expression of Oct4 characteristic of the pluripotent phenotype. Further, dynorphin B also increased cardiomyocyte-specific Nkx2.5 gene expression. However, neither dynorphin A nor methionin-enkephalins and leucin-enkephalins exhibited any significant effects on the course of mES cell differentiation. In conclusion, despite the increased expression of opioid receptors and some enhancement of mES cell differentiation by dynorphin B, the overall data do not support the notion that opioid peptides have a significant potential to promote the spontaneous cardiomyogenesis of mES cells in vitro.  相似文献   

5.
The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process.  相似文献   

6.
7.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

8.
Ascorbic acid (AA) increases cardiomyogenesis of embryonic stem (ES) cells. Herein we show that treatment of mouse ES cells with AA enhanced cardiac differentiation accompanied by an upregulation of the NADPH oxidase isoforms NOX2 and NOX4, phosphorylation of endothelial nitric oxide synthase (eNOS), and cyclic GMP (cGMP) formation, indicating that reactive oxygen species (ROS) as well as nitric oxide (NO) may be involved in cardiomyogenesis. In whole mount embryoid bodies as well as isolated Flk-1-positive (Flk-1+) cardiovascular progenitor cells ROS elevation by AA was observed in early stages of differentiation (Days 4-7), and absent at Day 10. In contrast NO generation following incubation with AA was absent at Day 4 and increased at Days 7 and 10. AA-mediated cardiomyogenesis was blunted by the NADPH oxidase inhibitors diphenylen iodonium (DPI) and apocynin, the free radical scavengers N-(2-mercaptopropionyl)-glycine (NMPG) and ebselen, and the NOS inhibitor L-NAME. Downregulation of NOX4 by short hairpin RNA (shRNA) resulted in significant inhibition of cardiomyogenesis and abolished the stimulation of MHC-ß and MLC2v gene expression observed on AA treatment. Our data demonstrate that AA stimulates cardiomyocyte differentiation from ES cells by signaling pathways that involve ROS generated at early stages and NO at late stages of cardiomyogenesis.  相似文献   

9.
The p38α mitogen-activated protein kinase (MAPK) inhibitor SB203580 had been reported to enhance the cardiomyogenesis of human embryonic stem cells (hESCs). To investigate if tri-substituted imidazole analogues of SB203580 are equally effective inducers for cardiomyogenesis of hESCs, and if there is a correlation between p38α MAPK inhibition and cardiomyogenesis, we designed and synthesized a series of novel tri-substituted imidazoles with a range of p38α MAPK inhibitory activities. Our studies demonstrated that suitably designed analogues of SB203580 can also be inducers of cardiomyogenesis in hESCs and that cell growth is affected by changes in the imidazole structures.  相似文献   

10.
Embryoid bodies were prepared from mouse embryonic stem cells expressing exogenous EGAM1C to analyze their ability to differentiate toward terminally differentiated cell types. The generation of cardiomyocytes was severely suppressed in Egam1c transfectants without upregulation of Nkx2-5, a crucial gene for cardiomyogenesis. These results indicate that EGAM1C is capable of affecting terminal differentiation in mouse embryonic stem cells.  相似文献   

11.
Abstract Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in differentiated cell populations with more than 10% cardiomyocytes without further enrichment. By screening candidate molecules, we have identified SB203580, a specific p38 MAP kinase inhibitor, as a potent promoter of hESC-cardiogenesis. SB203580 at concentrations <10 μM, induced more than 20% of differentiated cells to become cardiomyocytes and increased total cell numbers, so that the overall cardiomyocyte yield was approximately 2.5-fold higher than controls. Gene expression indicated that early mesoderm formation was favored in the presence of SB203580. Accordingly, transient addition of the inhibitor at the onset of differentiation only was sufficient to determine the hESC fate. Patch clamp electrophysiology showed that the distribution of cardiomyocyte phenotypes in the population was unchanged by the compound. Interestingly, cardiomyogenesis was strongly inhibited at SB203580 concentrations ≥15 μM. Thus, modulation of the p38MAP kinase pathway, in combination with factors released by END2 cells, plays an essential role in early lineage determination in hESC and the efficiency of cardiomyogenesis. Our findings contribute to transforming human cardiomyocyte generation from hESC into a robust and scalable process.  相似文献   

12.
13.
14.
BACKGROUND: Pluripotent embryonic stem (ES) cells, which have the capacity to give rise to all tissue types in the body, show great promise as a versatile source of cells for regenerative therapy. However, the basic mechanisms of lineage specification of pluripotent stem cells are largely unknown, and generating sufficient quantities of desired cell types remains a formidable challenge. Small molecules, particularly those that modulate key developmental pathways like the bone morphogenetic protein (BMP) signaling cascade, hold promise as tools to study in vitro lineage specification and to direct differentiation of stem cells toward particular cell types. METHODOLOGY/ PRINCIPAL FINDINGS: We describe the use of dorsomorphin, a selective small molecule inhibitor of BMP signaling, to induce myocardial differentiation in mouse ES cells. Cardiac induction is very robust, increasing the yield of spontaneously beating cardiomyocytes by at least 20 fold. Dorsomorphin, unlike the endogenous BMP antagonist Noggin, robustly induces cardiomyogenesis when treatment is limited to the initial 24-hours of ES cell differentiation. Quantitative-PCR analyses of differentiating ES cells indicate that pharmacological inhibition of BMP signaling during the early critical stage promotes the development of the cardiomyocyte lineage, but reduces the differentiation of endothelial, smooth muscle, and hematopoietic cells. CONCLUSIONS/ SIGNIFICANCE: Administration of a selective small molecule BMP inhibitor during the initial stages of ES cell differentiation substantially promotes the differentiation of primitive pluripotent cells toward the cardiomyocytic lineage, apparently at the expense of other mesodermal lineages. Small molecule modulators of developmental pathways like dorsomorphin could become versatile pharmacological tools for stem cell research and regenerative medicine.  相似文献   

15.
Zheng B  Wen JK  Han M 《The FEBS journal》2008,275(7):1568-1578
Human heart LIM protein (hhLIM) is a newly cloned protein. In vitro analyses showed that green fluorescent protein (GFP)-tagged hhLIM protein accumulated in the cytoplasm of C2C12 cells and colocalized with F-actin, indicating that hhLIM is an actin-binding protein in C2C12 cells. Overexpression of hhLIM-GFP in C2C12 cells significantly stabilized actin filaments and delayed depolymerization of the actin cytoskeleton induced by cytochalasin B treatment. Expression of hhLIM-GFP in C2C12 cells also induced significant changes in the organization of the actin cytoskeleton, specifically, fewer and thicker actin bundles than in control cells, suggesting that hhLIM functions as an actin-bundling protein. This hypothesis was confirmed using low-speed co-sedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of hhLIM. hhLIM has two LIM domains. To identify the essential regions and sites for association, a series of truncated mutants was constructed which showed that LIM domain 2 has the same activity as full-length hhLIM. To further characterize the binding sites, the LIM domain was functionally destructed by replacing cysteine with serine in domain 2, and results showed that the second LIM domain plays a central role in bundling of F-actin. Taken together, these data identify hhLIM as an actin-binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

16.
17.
18.
来源于囊胚期胚胎内细胞团的胚胎干细胞具有独特的生物学特性,包括无限自我更新的能力以及分化为内胚层、中胚层和外胚层各种细胞的潜能.阐明胚胎干细胞全能性维持以及向各种特定细胞分化的分子机制,不仅有助于我们了解胚胎发育过程,而且将促进胚胎干细胞尽早应用于疾病治疗.本文主要就干细胞的一种命运决定过程,维持胚胎干细胞全能性或失去全能性开始分化,结合最新的研究进展讨论该过程中的分子调控网络,包括信号转导通路、表达调控网络以及表观遗传调控.  相似文献   

19.
Hypoxia may regulate the proliferation of diverse stem cells. Our previous study showed that hypoxia promoted the proliferation of embryonic neural stem/progenitor cells (NPCs) and that hypoxia inducible factor-1(HIF-1) was critical in this process. HIF-1 could be stabilized under hypoxic conditions, and heat shock protein 90 (HSP90) is an essential protein that controls the activity and stabilization of HIF-1α. In the present work, we investigate whether HSP90 is involved in proliferation of NPCs under hypoxia by regulating HIF-1α stabilization. Geldanamycin (GA), an HSP90 inhibitor, decreased the expression of HIF-1α in NPCs during hypoxia-driven proliferation and reduced the expression level of HIF-1α protein under hypoxia in a time-dependent manner. The proliferation of NPCs induced by hypoxia was inhibited after GA treatment for 24 h. Another HSP90 inhibitor, radicicol, had the same effect on NPCs as GA. Furthermore, the expression of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in NPCs under hypoxia was suppressed by GA. The above data indicated that HSP90 might be involved in regulation of hypoxia-driven proliferation. Both institutes have contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号