首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in unfolding and enzymatic activity of bovine carbonic anhydrase II (BCA II) in different concentrations of 2,2,2-trifluoroethanol (TFE) were investigated by 1-anilino-8-naphthalenesulfonate (ANS) fluorescence emission spectra, far-UV CD spectra, and enzyme activity. The results showed that the activity and conformation of BCA II changed according to the concentration of TFE. Significant aggregation was observed when BCA II was denatured at TFE concentrations between 10 and 35% (v/v). When the concentration of TFE exceeded 40%, the aggregation of BCA II was not very obvious. The activity of BCA II decreased almost to zero as the TFE concentration reached 26%. The ANS fluorescence spectra indicated the tertiary conformations of BCA II were more stable in solutions with TFE concentrations lower than 15% (v/v) and higher than 40% (v/v). Far-UV CD spectra showed that high concentrations (higher than 25%) of TFE could induce BCA II to form more alpha-helix structures and caused these structures to be in relatively stable states. The native conformation of BCA II being destroyed after its inactivity indicated that the active sites of BCA II is situated in a limited region and has more flexibility than the whole enzyme molecule.  相似文献   

2.
The kinetics of thermal inactivation of bovine carbonic anhydrase (BCA) was studied in a 50 mM Tris-HCl buffer, pH 7.8 using p-nitrophenyl acetate as substrate in absorbance of 400 nm by UV-VIS spectrophotometry. The number of conformational locks and inter-subunit amino acid residues of BCA were obtained by thermal inactivation analysis. The cleavage bonds between dimers of BCA during thermal dissociation and type of interactions between specific amino acid residues were also detected. The thermal inactivation curves were plotted in temperatures ranging between 40-70°C. It was shown several phases for inactivation of BCA at 65°C. Analyses of the curves were done by the conformational lock theory. The subunits are dissociated and several intermediates appear during inactivation through increasing the temperature in comparison with native state. Dynamic light scattering measurements was done to study the changes in hydrodynamic radius during thermal inactivation. Three distinct zones were shown in DLS data. Biochemical computation using ligplot is performed to find the inter-subunit amino acid residues for BCA.  相似文献   

3.
Spontaneous refolding of GdnHCl denatured bovine carbonic anhydrase II (BCA II) shows at least three phases: a burst phase, a fast phase, and a slow phase. The fast and slow phases are both controlled by proline isomerization. However, we find that in trigger factor (TF)-assisted BCA II folding, only the fast phase is catalyzed by wild-type TF, suggesting that certain proline residues are accessible in folding intermediates. The refolding yields of BCA II assisted by wild-type TF and TF mutants which lack PPIase activity are about the same, which provides further experimental evidence that the PPIase and chaperone activities of TF are independent. The binding of TF to folding intermediates during BCA II refolding was characterized by chemical crosslinking and Western blotting. A scheme for TF-assisted BCA II folding is proposed and the possible role of the TF dimer as a "binding" chaperone in vivo is discussed.  相似文献   

4.
Photoreversible changes in the conformation and enzymatic activity of bovine carbonic anhydrase have been investigated as a function of photoresponsive surfactant concentration and light conditions. The light-responsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to photoreversibly control enzyme–surfactant interactions. Small-angle neutron scattering and dynamic light scattering measurements, along with fluorescence spectroscopy, indicate that carbonic anhydrase unfolds upon addition of the surfactant under visible light, while only a small degree of unfolding is observed under UV light. Therefore, the enzyme is completely inactivated in the presence of the trans surfactant, while 40% of the native activity is preserved under UV light, providing a photoreversible “on/off switch” of enzyme activity. Small-angle neutron scattering data provide details of the in vitro conformational changes of the enzyme in response to the photosurfactant and light, with the enzyme found to aggregate as a result of photosurfactant-induced unfolding. Fourier transform infrared (FT-IR) spectroscopy further provides information on the secondary structure changes of the protein in the presence of photosurfactant.  相似文献   

5.
6.
Two cytosolic carbonic anhydrase isozymes (CA-II and CA-III) were studied by immunohistochemistry in bovine parotid glands during fetal development. In a 3-month-old fetus of crown-rump length (CRL) 17 cm, the expression of CA-II in undifferentiated epithelial cells was observed, whereas immunostaining for CA-III remained negative. At 26 cm CRL (4–5 months old), weak expression of CA-III in large ductal epithelial cells was noted. The accumulation of secreted granules in primary acinar cells was initially observed at this stage. In a newborn calf, anti-CA-II reactivity almost disappeared from most duct segments. The time-dependent expression and distribution of the isozymes in parotid glands may reflect different biological functions of these structurally closely related isozymes. Bovine parotid acinar cells of fetuses would thus appear to possess all the cellular structures and immunohistochemical properties at 4 and 5 months of gestation. CA-II subsequently disappeared from duct segments and nearly all acinar cells in adults were present at or just after birth.  相似文献   

7.
The temperature dependence of the activity and structure of the enzyme carbonic anhydrase was studied. The Arrhenius plot shows a jump which is seen usually in proteins with more than one subunit or with one subunit but more than one domain. Since carbonic anhydrase has only one subunit with one domain, the fine conformational changes of the protein motifs could only be detected through circular dichroism polarimetry. It seems that the jump in Arrhenius plot is a result of some slight structural changes in the secondary and tertiary structures of the enzyme.  相似文献   

8.
The molecular weight of bovine carbonic anhydrase was determined by osmometric and sedimentation equilibrium methods. The solvents used were 0.15 M KCl and 6.0 M guanidinium chloride. The value found was 28300 ± 300 which is lower than the values found by other investigators.As a part of the studies the intrinsic viscosities of the enzyme in 4.5 M guanidinium thiocyanate and 6.0 M guanidinium chloride were also ascertained. The values found, 25.4 ml/g and 24.7 ml/g, respectively, are smaller than expected on the basis of the molecular weight. This finding, however, is in agreement with the low value. 0.72 × 10?3 cm3 mol/g2 of the second virial coefficient in 6.0 M guanidinium chloride.  相似文献   

9.
The changes in activity and unfolding of calf intestinal alkaline phosphatase (CIP) during denaturation in different concentrations of trifluoroethanol (TFE) have been investigated by far-ultraviolet circular dichroism and fluorescence emission spectra. Unfolding and activation rate constants were measured and compared, the activation and inactivation courses were much faster than that of unfolding, which suggests that the active site of CIP containing two zinc ions and one magnesium ion is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole. However, compared to other metalloenzymes, CIP is inactivated at higher concentrations of TFE as denaturant.  相似文献   

10.
Acid denaturation of bovine carbonic anhydrase B   总被引:2,自引:0,他引:2  
K P Wong  L M Hamlin 《Biochemistry》1974,13(13):2678-2683
  相似文献   

11.
Membrane-associated carbonic anhydrase purified from bovine lung   总被引:18,自引:0,他引:18  
We found carbonic anhydrase activity associated with particulate fractions of homogenates of rat, rabbit, human, and bovine lungs. These membrane-associated carbonic anhydrases were remarkably stable in solutions containing sodium dodecyl sulfate (SDS). The bovine enzyme was dissolved with SDS and purified by affinity chromatography and gel filtration. The purified enzyme contains glucosamine, galactose, and sialic acid; it is at least 20% carbohydrate. The apparent molecular weight by SDS-polyacrylamide gel electrophoresis (52,000) may be higher than the actual molecular weight due to the presence of carbohydrate. The enzyme contains cystine, an amino acid that is absent in bovine erythrocyte carbonic anhydrase. Dithiothreitol greatly accelerated the rate of inactivation of the membrane-associated enzyme in SDS, so disulfide bonds appear to stabilize this enzyme. The specific CO2-hydrating activity was about half that of the erythrocyte enzyme. Acetazolamide inhibits the membrane-associated enzyme (Ki = 10 nM) nearly as well as the erythrocyte enzyme (Ki = 3 nM). Antibody to bovine erythrocyte carbonic anhydrase did not inhibit the membrane-associated enzyme. Other investigators have accumulated a good deal of evidence for carbonic anhydrase on the luminal surface of pulmonary capillaries. The enzyme described here appears to be a new isozyme whose properties are consistent with such a localization.  相似文献   

12.
The interactions between hydrated trichloroacetaldehyde and cobalt(II)bovine carbonic anhydrase B have been investigated as a function of pH by means of electronic spectroscopy of FT nmr spectroscopy. The hydrated aldehyde is bound to the metal ion and its apparent affinity constant is pH dependent with a bell-shaped profile. The kinetic parameters of the dissociation process have also been determined.  相似文献   

13.
The three-dimensional structure of the Thr-200----Ser (T200S) mutant of human carbonic anhydrase II (CAII) has been determined by X-ray crystallographic methods at 2.1-A resolution. This particular mutant of CAII exhibits CO2 hydrase activity that is comparable to that of the wild-type enzyme with a 2-fold stabilization of the E.HCO3- complex and esterase activity that is 4-fold greater than that of the wild-type enzyme. The structure of the mutant enzyme reveals no significant local changes accompanying the conservative T200S substitution, but an important nonlocal structural change is evident: the side chain of catalytic residue His-64 rotates away from the active site by 105 degrees about chi 1 and apparently displaces a water molecule. The displaced water molecule is present in the wild-type enzyme; however, the electron density into which this water is built is interpretable as an alternate conformation of His-64 with 10-20% occupancy. The rate constants for proton transfer from the zinc-water ligand to His-64 and from His-64 to bulk solvent are maintained in the T200S variant; therefore, if His-64 is conformationally mobile about chi 1 and/or chi 2 during catalysis, compensatory changes in solvent configuration must sustain efficient proton transfer.  相似文献   

14.
Summary Rabbits immunized with low-activity ruminal carbonic anhydrase (RCA) isoenzyme, extracted from ruminal epithelial cells isolated by digestion with trupsin, yielded anti-RCA sera which reacted specifically with bovine RCA in double agar gel diffusion and immunoelectrophoretic tests, but failed to cross-react with bovine erythrocyte CA. The localization of RCA was identified in histological sections and isolated ruminal epithelial cell preparations by indirect immunofluorescence and immunoperoxidase tests as the basal, spinosum and granulosum layers of ruminal mucous epithelium.  相似文献   

15.
16.
The study of internal mobility in enzymes is of considerable importance for the understanding of their catalytic function, which cannot be adequately described as a property of a rigid protein. [13C]NMR spectroscopy permits simultaneous and selective observation of spectral lines from carbon atoms in many different residues in the enzyme with the chemical shift and relaxation parameters sensitive to structure, conformation and local motion. The changes in internal mobility in bovine carbonic anhydrase B (carbonate hydrolase, EC 4.2.1.1) in the native form and at various stages of denaturation are studied. Measurements of the relaxation parameters (T1, T1 rho) and of the NOE of 13C nuclei in the native protein showed that the extensive beta-sheet together with groups in the active center has a considerable internal librational mobility with tau G about 10(-11) s. This librational mobility is fairly uniform for all the alpha-carbons in the native enzyme. The use of a semiempirical modification of the motional theory proposed by Woessner allows to use simultaneously all the relaxation parameters measured in order to determine reliable values of the various correlation times.  相似文献   

17.
Amyloids are typically characterized by extensive aggregation of proteins where the participating polypeptides are involved in formation of intermolecular cross beta-sheet structures. Alternate structure attainment and amyloid formation has been hypothesized to be a generic property of a polypeptide, the propensities of which vary widely depending on the polypeptide involved and the physicochemical conditions it encounters. Many proteins that exist in the normal form in-vivo have been shown to form amyloid when incubated in partially denaturing conditions. The protein bovine carbonic anhydrase II (BCA II) when incubated in mildly denaturing conditions showed that the partially unfolded conformers assemble together and form ordered amyloid aggregates. The properties of these aggregates were tested using the traditional Congo-Red (CR) and Thioflavin-T (ThT) assays along with fluorescence microscopy, transmission electron microscopy (TEM), and circular dichroism (CD) spectroscopy. The aggregates were found to possess most of the characteristics ascribed to amyloid fibers. Thus, we report here that the single-domain globular protein, BCA II, is capable of forming amyloid fibrils. The primary sequence of BCA II was also analyzed using recurrence quantification analysis in order to suggest the probable residues responsible for amyloid formation.  相似文献   

18.
Interaction of bovine carbonic anhydrase with acetate ions   总被引:1,自引:0,他引:1  
  相似文献   

19.
2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10-15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5-5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15-30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in proteins and discuss these effects in the framework of the proposed gating mechanism of MscS.  相似文献   

20.
The effects of dimethyl sulfoxide (DMSO) on creatine kinase (CK) conformation and enzymatic activity were studied by measuring activity changes, aggregation, and fluorescence spectra. The results showed that at low concentrations (< 65% v/v), DMSO had little effect on CK activity and structure. However, higher concentrations of DMSO led to CK inactivation, partial unfolding, and exposure of hydrophobic surfaces and thiol groups. DMSO caused aggregation during CK denaturation. A 75% DMSO concentration induced the most significant aggregation of CK. The CK inactivation and unfolding kinetics were single phase. The unfolding of CK was an irreversible process in the DMSO solutions. The results suggest that to a certain extent, an enzyme can maintain catalytic activity and conformation in water-organic mixture environments. Higher concentrations of DMSO affected the enzyme structure but not its active site. Inactivation occurred along with noticeable conformational change during CK denaturation. The inactivation and unfolding of CK in DMSO solutions differed from other denaturants such as guanidine, urea, and sodium dodecyl sulfate. The exposure of hydrophobic surfaces was a primary reason for the protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号