首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Buskey  Edward J. 《Hydrobiologia》1994,(1):447-453
Visual predation by fish on copepods involves prey encounter, attack and capture; during any of these processes prey selection can occur. Developmental changes in copepods, including increases in swimming speed, size and image contrast increase the encounter rate and distance at which they can be detected by predators. Copepods compensate for this increase vulnerability with age through diel vertical migration and improved escape capabilities. This study quantifies the changes in swimming speed and movement pattern with developmental stage of the copepod Acartia tonsa, using a video-computer system for motion analysis. Changes in visible size and image contrast with developmental stage were quantified under simulated natural illumination conditions using a video based image analysis system. The escape responses of the naupliar stages of the copepod Acartia tonsa were quantified in response to a stationary pipette sucking in water at a constant speed. Accurate quantification of the parameters that affect feeding selectivity of planktivorous fish will provide the basis for evaluation of their relative importance in future studies.  相似文献   

2.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

3.
SUMMARY. A clear difference in the ability lo escape from fish predators exists between members of the Cladocera and Copepoda. The results of our laboratory studies have shown that underyearling roach and bream both found copepods more difficult to capture than cladocerans. However, bream were far more efficient than roach at catching the more elusive copepod prey. The basis for this difference was the greater strike ability of bream, most likely related to its more protrusible mouth. In their natural environment the two species of fish exhibited food resource partitioning with planktonic Cladocera predominating in roach guts and copepods and non-planktonic Cladocera composing the vast majority of the gut contents of bream. Differences in diet are partly due to their contrasting attack abilities. Additional variation may arise because of subtle differences in the timing and location of foraging.  相似文献   

4.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

5.
Feeding intensity by whitefish Coregonus sp., in oligotrophic Lake Lucerne in Switzerland was high during dusk when the bulk of potential prey items were in the depth zone occupied by the fish. Diet composition was fairly uniform throughout the day but changed substantially over the seasons. The fish fed opportunistically; differences between seasons reflected changes in prey availability. During the intensive feeding and growing period (May-September), fish were found in the upper 20 m of the lake feeding primarily on cladocerans. Large and non-evasive species, Daphnia spp. and Bythotrephes longimanus , were the most numerous and frequent organisms in the diet during the major part of the growing season. Smaller ( Bosmina spp.) as well as evasive species (cyclopoid copepods) were consumed in large numbers when larger, non-evasive species were rare in the lake. The fish showed strong preference for the least abundant crustacean, B. longimanus , while the most abundant crustaceans, calanoid copepods, were rare in the diet. The fish not only selected particular species but, within each species, selected the larger individuals. Diel vertical migration of the prey items in this lake could be, at least in part, attributed to fish predation pressure. The observed selectivity patterns shown by the fish are explained in terms of prey visibility, escape ability, the overlap in distribution of predators and prey in time and space, the profitability of the prey and the present trophic state of the lake.  相似文献   

6.
The trophodynamics of a coastal plankton community were studied,focusing on fish larvae and their copepod prey. The major objectiveswere to describe distributional overlap and evaluate the predatoryimpact by larval fish. The study was carried out across DoggerBank in the North Sea, August-September 1991. Sampling transectscrossed tidal fronts off the Bank and plankton at all trophiclevels showed peak abundance within frontal zones. Also Verticallythere was a significant overlap in distributional patterns ofthe plankton. Seven species of fish larvae were abundant, ofthese sprat (Sprattus sprattus) dominated. The abundance ofone group of fish larvae peaked in the shallow water close tothe Bank, whereas other species, including sprat, were foundin deeper water. Prey preference and predation pressure of fishlarvae were assessed using information on prey sizes and growthrates of larvae and the copepod prey. We estimated larval removalof preferred prey sizes to 3–4% day–1, counterbalancedby a 3–7% day–1' replenishment from copepod productionand growth. Additional predation pressure on copepods by aninvertebrate predator was estimated to 1–3%day–1.In conclusion, the dynamics of fish larvae and other zooplankterswere closely linked. At peak abundances of fish larvae (>35mg dry weight m–2), the accumulated predation on specificsize ranges of copepods, exerted by larvae and other predators,could exceed the ability of copepod replenishment and intra-/interspecificcompetition among predators might take place.  相似文献   

7.
Is there safety‐in‐numbers for prey?   总被引:4,自引:0,他引:4  
Sean D. Connell 《Oikos》2000,88(3):527-532
The abundance of prey affects the rate of predation, but little consensus exists on whether this enhances or reduces per capita mortality. Studies of aggregating prey in marine habitats generally emphasise that the probability of predation of any individual is the reciprocal of the number of prey within a school. A field experiment tested the alternative hypotheses that predation by predatory fish on schooling prey (1) increased with an increase in the number of prey per school and that this caused (2) survival to be lower in schools with more individuals. The number of prey (juvenile Acanthochromis polyacanthus ) per school was manipulated in replicate treatments with natural densities of large predatory fish (open plots) and treatments without large predatory fish (exclusion cages). Large predatory fish preyed on juveniles in a density-dependent manner and this was the key source of density-dependent mortality in plots open to all predators. There was some suggestion that small predatory fish also prey on juveniles in a density-dependent manner, but this was weak and did not translate into density-dependent mortality of juveniles. It would appear that aggregation of prey may be a successful strategy against predation from some predators, but not always every predator, or all predators in combination.  相似文献   

8.
王亚  付成  胡月  付世建 《水生生物学报》2021,45(5):1154-1163
为了比较早期捕食胁迫经历和当前环境中存在的捕食者对鱼类行为的影响, 并考查这些影响是否存在种间差异, 研究分别考查了测定环境(有、无捕食者存在)对有、无捕食胁迫经历的鳊(Parabramis pekinensis)、草鱼(Ctenopharyngodon idellus)、鲫(Carassius auratus)和中华倒刺鲃(Spinibarbus sinensis)等4种鲤科鱼类探索性、活跃性和勇敢性的影响。结果发现: 早期捕食胁迫经历与当前环境条件对鱼类行为产生截然不同的影响, 且存在较大的种间差异。无捕食胁迫经历的鳊、草鱼和中华倒刺鲃均会对陌生的捕食者乌鳢(Channa argus)做出行为响应, 提示这3种鱼可能对陌生捕食者具有一定的识别能力, 但这种识别与猎物鱼通过捕食胁迫经历获得的识别仍具有一定差距; 具有捕食胁迫经历的鳊和中华倒刺鲃在空白环境中未表现出反捕食行为, 可能是节约能量的一种策略。总体而言, 草鱼对捕食胁迫经历和测定环境处理反应更为敏感, 而中华倒刺鲃的反应则相对保守。但当周围环境中存在捕食者时, 4种鲤科鱼类均会通过维持较高运动状态的方式来应对捕食者。维持这种应激状态可能对猎物鱼保持与捕食者的距离, 并随时保持警惕较为关键。  相似文献   

9.
Induced defences, such as the predator avoidance morphologies in amphibians, result from spatial or temporal variability in predation risk. One important component of this variability should be the difference in hunting strategies between predators. However, little is known about how specific and effective induced defences are to different types of predators. We analysed the impact of both pursuing (fish, Gasterosteus aculeatus) and sit-and-wait (dragonfly, Aeshna cyanea) predators on tadpole (Rana dalmatina) morphology and performance (viz locomotive performance and growth rate). We also investigated the potential benefits of the predator-induced phenotype in the presence of fish predators. Both predators induced deeper tail fins in tadpoles exposed to threat of predation, and stickleback presence also induced longer tails and deeper tail muscles. Morphological and behavioural differences resulted in better escape ability of stickleback-induced tadpoles, leading to improved survival in the face of stickleback predation. These results clearly indicate that specific morphological responses to different types of predators have evolved in R. dalmatina. The specific morphologies suggest low correlations between the traits involved in the defence. Independence of traits allows prey species to fine-tune their response according to current predation risk, so that the benefit of the defence can be maximal.  相似文献   

10.
A mathematical model of the attack success of planktonic predators(fish larvae and carnivorous copepods) is proposed. Based ona geometric representation of attack events, the model considershow the escape reaction characteristics (speed and direction)of copepod prey affect their probability of being captured.By combining the attack success model with previously publishedhydrodynamic models of predator and prey perception, we examinehow predator foraging behaviour and prey perceptive abilityaffect the size spectra of encountered and captured copepodprey. We examine food size spectra of (i) a rheotactic cruisingpredator, (ii) a suspension-feeding hovering copepod and (iii)a larval fish. For rheotactic predators such as carnivorouscopepods, a central assumption of the model is that attack istriggered by prey escape reaction, which in turn depends onthe deformation rate of the fluid created by the predator. Themodel demonstrates that within a species of copepod prey, theability of larger stages to react at a greater distance fromthe predator results in increased strike distance and, hence,lower capture probability. For hovering copepods, the vorticityfield associated with the feeding current also acts in modifyingthe prey escape direction. The model demonstrates that the reorientationof the prey escape path towards the centre of the feeding current'sflow field results in increased attack success of the predator.Finally, the model examines how variability in the kineticsof approach affects the strike distance of larval fish. In caseswhere observational data are available, model predictions closelyfit observations.  相似文献   

11.
Trophically transmitted parasites may increase their transmission efficiency by altering the behaviour of infected hosts to increase their susceptibility to predation by target hosts (the next host in the life cycle). The parasite Diplostomum spathaceum (Trematoda) reduces the vision of its fish intermediate hosts: its metacercariae lodge themselves in the eyes of fish and induce cataract formation, which gives them the opportunity to affect fish behaviour. We examined whether D. spathaceum eye flukes change the preference of fish for the surface layers of the water column or their escape behaviour, which could make the fish more vulnerable to predation by bird hosts. We also studied the influence of parasites on the susceptibility of fish to artificial aerial predators that were able to catch fish from the water surface. Infected and control fish did not differ in their preference for the surface layers but infected fish showed less escape behaviour when a black plate was drawn over the water surface. They were also more easily caught by human ‘predators’ dipping a net into the tank. Thus, infected fish should be easier prey for gulls and terns, implying that the ability of D. spathaceum eye flukes to alter fish behaviour may be a parasite strategy evolved to enhance transmission.  相似文献   

12.
The timing and magnitude of an escape reaction is often the determining factor governing a copepod's success at avoiding predation. Copepods initiate rapid and directed escapes in response to fluid signals created by predators; however little is known about how copepods modulate their behavior in response to additional sensory input. This study investigates the effect of light level on the escape behavior of Calanus finmarchicus. A siphon flow was used to generate a consistent fluid signal and the behavioral threshold and magnitude of the escape response was quantified in the dark and in the light. The results show that C. finmarchicus initiated their escape reaction further from the siphon and traveled with greater speed in the light than in the dark. However, no difference was found in the escape distance. These results suggest that copepods use information derived from multiple sensory inputs to modulate the sensitivity and strength of the escape in response to an increase risk of predation. Population and IBM models that predict optimal vertical distributions of copepods in response to visual predators need to consider changes in the copepod's behavioral thresholds when predicting predation risk within the water column.  相似文献   

13.
Threat-Sensitive Responses to Predator Attacks in a Damselfly   总被引:5,自引:0,他引:5  
The threat sensitivity hypothesis predicts that prey species assess and adjust their behavior flexibly in accordance with the magnitude of the threat imposed by a predator. We tested this hypothesis with regard to escape behavior and thanatosis (feigning of death to escape predation) in larvae of the damselfly Ischnura elegans. We manipulated the perceived predation threat of the larvae by changing three factors: lamellae autotomy (an escape strategy where animals sacrifice a body part when grasped by a predator; lamellae present or absent), kairomone type (odors released by predators; control, dragonfly kairomones or fish kairomones), and population of origin (fishpond or fishless pond). We demonstrated that thanatosis increased survival both when confronted with dragonfly and fish predators. We could show, for the first time, costs of past autotomy to be predator‐dependent: larvae without lamellae suffered higher predation mortality but only in the presence of a dragonfly predator and not in the presence of a fish predator. This is in accordance with the observed reduced escape speed of larvae after autotomy, which may affect escape probability toward dragonfly predators but not to the very fast fish predators. Unexpectedly, kairomone type did not affect the escape response of the larvae. In accordance with the threat sensitivity hypothesis, after an unsuccessful attack, larvae without lamellae had a higher frequency to enter thanatosis than larvae with lamellae and larvae from the fishpond showed longer thanatosis durations than larvae from the fishless pond. Consistent with the hypothesis, the reaction of the larvae to a simulated attack depended jointly on lamellae status and population. In fishless ponds, larvae with lamellae swam away more frequently than larvae without lamellae; in fishponds both groups almost never swam away and relied mostly upon immobility. Given the obvious benefits of adaptively varying escape responses we hypothesize this threat sensitivity to be widespread. Moreover, we argue that former inconsistencies between studies with regard to escape behavior may have been partly because of such adaptive variation.  相似文献   

14.
Ontogenetic changes in resource use are widespread in many fish species. This study investigated the feeding habits of whitefish (C. lavaretus L.) larvae in Lake Annecy (France) coupled with experimental behavioral studies in order to identify the underlying mechanisms of the ontogenetic shifts in the diet. The predatory behavior of wild larvae, and the escape responses of their zooplankton prey were both videorecorded in experimental tanks under controlled laboratory conditions. Ontogenetic diet patterns showed that young whitefish larvae have a preference for small cyclops, while older larvae selectively predate cladocerans. Our experimental observations showed that the capture success rate also varied in relation to ontogenetic development in fish. Young larvae were more successful in capturing small copepods, whereas old larvae were more successful in capturing Daphnia. In addition, the larvae were able to adjust their predatory behavior (speed, pursuit) according to the swimming pattern of the prey. These observations suggest that the selective predation on cladocerans observed in old larvae is the outcome of both active and passive choices depending on the escape swimming behavior of the prey, and handling time of the predator.  相似文献   

15.
Although prey must move to forage, escape predation or gain information about predation risk, movement itself enhances the risk of predation by increasing visibility of prey and encounter rates with predators. Animals subjected to stressors often show altered behaviour; a widely cited effect of contaminant exposure is an increase in vulnerability to predation, which may be mediated by an increase in risky behaviour. Round goby are invasive fish that typically rely on crypsis and sheltering (low‐activity behaviours) to avoid predators. We collected round goby from contaminated sites and tested whether they showed signs of altered risk‐taking compared with fish from a less contaminated reference site. We subjected the fish to a simulated predation event (a motor‐operated model bass) under both diurnal and nocturnal conditions. Fish from contaminated sites showed lower overall activity levels, but also failed to reduce activity following an attack, unlike fish from the reference site. The intensity of effects varied with diel period. Males, but not females, from contaminated sites showed reduced likelihood of darting during an attack, while females, but not males, from contaminated sites were less likely to approach the predator. Sex differences in round goby risk‐taking may reflect sex‐specific selection pressures on activities promoting predation risk. With the exception of post‐attack activity, round goby from contaminated sites generally showed signs of reduced risk‐taking. If contaminant exposure increases goby vulnerability to predators, it may be occurring through behavioural mechanisms other than impacts on risky prey responses.  相似文献   

16.
Calanoid copepods possess remarkable abilities to detect andescape from hydrodynamic disturbances, such as those createdby approaching predators. At the same time, a number of studiesin coastal ecosystems have suggested that gelatinous predators,including medusae in the Class Scyphozoa, exert top-down controlon copepod populations. Although prey escape behavior playsa critical role in predation models, we have relatively littleempirical data on how copepods respond to encounters with scyphomedusae.In this study, I used video to quantify encounter rates andescape behaviors of the copepod Acartia hudsonica during interactionswith two scyphomedusae, Aurelia aurita and Cyanea sp., in twoflow regimes. Escapes were complex, variable and effective.Fewer than 1% of encounters resulted in ingestion. Typically,A.hudsonica avoided contact by responding when predators remainedseveral body lengths (4 to 10 mm) distant and stringing togethermany escape jumps at submaximum velocities (33 to 59 mm s–1).In addition, copepodite stages behaved passively—or failedto respond—following encounters with medusae more oftenthan did adults. Because escape behavior exhibited by A.hudsonicawas so variable, it is unlikely that medusae capture copepodsusing a single, quantifiable mechanism. A range of responseswithin populations and individuals may be the best strategyfor zooplankton faced with strong predation pressure from avariety of predators.  相似文献   

17.
The initial evolution of conspicuous warning signals presents an evolutionary problem because selection against rare conspicuous signals is presumed to be strong, and new signals are rare when they first arise. Several possible solutions have been offered to solve this apparent evolutionary paradox, but disagreement persists over the plausibility of some of the proposed mechanisms. In this paper, we construct a deterministic numerical simulation model that allows us to derive the strength of selection on novel warning signals in a wide range of biologically relevant situations. We study the effects of predator psychology (learning, rate of mistaken attacks, and neophobia) on selection. We also study the how prey escape, predation intensity, number of predators, and abundance of different prey types affects selection. The model provides several important results. Selection on novel warning signals is number rather than frequency dependent. In most cases, there exists a threshold number of aposematic individuals below which aposematism is selected against and above which aposematism is selected for. Signal conspicuousness (which increases detection rate) and distinctiveness (which allows predator to distinguish defended from nondefended prey) have opposing effects on evolution of warning signals. A more conspicuous warning signal cannot evolve unless it makes the prey more distinctive from palatable prey, reducing mistaken attacks by predators. A novel warning signal that is learned quickly can spread from lower abundance more easily than a signal that is learned more slowly. However, the relative rate at which the resident signal and the novel signal are learned is irrelevant for the spread of the novel signal. Long-lasting neophobia can facilitate the spread of novel warning signals. Individual selection via the ability of defended prey to escape from predator is not likely to facilitate evolution of conspicuous warning signals if both the resident (cryptic) morph and the novel morph have the same escape probability. Predation intensity (defined as the proportion of palatable prey eaten by the predator) has a strong effect on selection. More intense predation results in strong selection against rare signals, but also strong selective advantage to common signals. The threshold number of aposematic individuals is lower when predation is intense. Thus, the evolution of warning signals may be more likely in environments where predation is intense. The effect of numbers of predators depends on whether predation intensity also changes. When predation intensity is constant, increasing numbers of predators raises the threshold number of aposematic individuals, and thus makes evolution of aposematism more difficult. If predation intensity increases in parallel with number of predators, the threshold number of aposematic individuals does not change much, but selection becomes more intense on both sides of the threshold.  相似文献   

18.
Stomach contents from lesser sandeel Ammodytes marinus and herring Clupea harengus caught at one and three stations, respectively, were analysed to investigate predation intensity on capelin Mallotus villosus larvae. Most capelin larvae were found in the anterior sections of the stomachs close to the oesophagus, indicating that rapid digestion rates of larvae reduced the abundance in the posterior sections. The anterior sections of the stomachs had alternating layers of either copepods or capelin larvae and krill. This shows that the individual predators switched between feeding on either copepods or on krill and capelin larvae. A total of 549 capelin larvae was found in 440 fish stomachs. Capelin larvae were found in 20% of the sandeel stomachs, and 24, 34 and 62% of the stomachs from the three herring stations, respectively. Many of the predator stomachs contained more than five larvae, and up to 28 larvae were found in one herring stomach. The herring appeared to prey selectively on the largest capelin larvae, and the number of larvae per stomach was much higher in stomachs where krill had recently been eaten than where copepods were dominant. The predation intensity measured in this study is much higher than reported in earlier studies, and it is suggested that the predators were feeding using a searching image, and that the concentrations of alternative prey (copepods and krill) varied around a switching threshold.  相似文献   

19.
A genual pattern of photophobic responses has been observedwhich differs for calanoid copepods from freshwater, estuarineand oceanic environments. Using a video-computer system formotion analysis, the photophobic responses of light and darkadapted calanoid copepods were compared. Dark-adapted copepodswere exposed to 600 ms flashes of dim blue light at 5 s intervalswhich simulated the flashes of biolumines-cent marine zooplankton.Light-adapted copepods were exposed to 600 ms intervals of darknessat 5 s intervals to simulate the shadows of organisms passingoverhead. Four species of coastal marine copepods (Acartia hudsonica,Centropages hamatus, Pseudocalanus minutus and Temora longicornis)all showed photophobic responses to both flashes and shadows.These responses may have adaptive value to the copepods sincethey live in an environment with predators that are bioluminescentat night and cast shadows on their prey during the day (e.g.ctenophores and cnidarian medusae). Two species of oceanic copepods(Euchaeta marina, Pleuromamma abdominalis) showed strong photophobicresponses to flashes but no response to shadows. This may correspondto the abundance of bioluminescent predators on copepods inthe oceanic environment (fish, ctenophores, siphonophores, etc.)and their lack of exposure to the shadows of predators, sinceboth these species are rarely found in the euphoric zone duringthe day. Two species of freshwater copepods (Diaptomus sanguineus,Epishwa massachusettsensis) showed no similar photophobic responseto flashes of light. This lack of startle response may relateto the lack of bioluminescence in the freshwater environment.Freshwater copepods showed a weak photophobic response to shadows.The adaptive value of this behavior is unclear, however, sincethe responses seem to be too weak to function for escape, andthe dominant predators large enough to cast shadows (fish) tendto approach their prey laterally. 1Present address: Marine Science Institute, University of Texasat Austin, Port Aransas, TX 78373–1267, USA  相似文献   

20.
1. Wetland insect predators can structure aquatic prey communities via selective predation, but receive considerably less attention than vertebrate predators. We conducted laboratory experiments to test selective predation by two species of larval dytiscid beetles ( Agabus ; Coleoptera: Dytiscidae) and the potential contribution of these beetles to suppression of mosquito populations in constructed wetlands.
2.  Agabus consumed copepods, ostracods and mosquito larvae in no-choice tests. When offered a choice, 76% of all prey consumed were mosquito larvae, indicating selective predation. Subsequent experiments revealed this preference was due to ease of capture of mosquito larvae over alternative prey.
3. Cannibalism and intraguild predation were common within and between species of Agabus , which may reduce the overall impact of the observed selective predation.
4.  Agabus larvae selectively preyed on mosquito larvae over alternative prey, which is not characteristic of some fish used as biological control agents for mosquitoes. Predator exclusion or similar experiments in the field could document how these results translate into a natural setting.
5. The findings of this study suggest developing mosquito suppression strategies focused on conservation of native wetland predators. These strategies are preferable to introducing non-native generalist predators, or applying pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号