首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Life history theory predicts that greater extrinsic mortality will lead to earlier and higher fertility. To test this prediction, I examine the relationship between life expectancy at birth and several proxies for life history traits (ages at first sex and first marriage, total fertility rate, and ideal number of children), measured for both men and women. Data on sexual behaviors come from the Demographic and Health Surveys (DHS). Two separate samples are analyzed: a cross-sectional sample of 62 countries and a panel sample that includes multiple cross-sectional panels from 48 countries. Multivariate regression analysis is used to control for potential confounding variables. The results provide only partial support for the predictions, with greater support among women than men. However, the prediction is not supported in sub-Saharan African countries, most likely owing to the nonequilibrium conditions observed in sub-Saharan Africa with respect to life expectancy. The applicability of the model to understanding HIV/AIDS risk behaviors is discussed.  相似文献   

2.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

3.
4.
5.
Life-cycle assessment concepts and methods are currently being applied to evaluate integrated municipal solid waste management strategies throughout the world. The Research Triangle Institute and the U.S. Environmental Protection Agency are working to develop a computer-based decision support tool to evaluate integrated municipal solid waste management strategies in the United States. The waste management unit processes included in this tool are waste collection, transfer stations, recovery, compost, combustion, and landfill. Additional unit processes included are electrical energy production, transportation, and remanufacturing. The process models include methodologies for environmental and cost analysis. The environmental methodology calculates life cycle inventory type data for the different unit processes. The cost methodology calculates annualized construction and equipment capital costs and operating costs per ton processed at the facility. The resulting environmental and cost parameters are allocated to individual components of the waste stream by process specific allocation methodologies. All of this information is implemented into the decision support tool to provide a life-cycle management evaluation of integrated municipal solid waste management strategies.  相似文献   

6.
7.
8.
9.
10.
The Thread of Life: Toraja Reflections on the Life Cycle. Douglas W. Hollan and Jane C. Wellenkamp. Honolulu: University of Hawaii Press, 1996. 239 pp.  相似文献   

11.
Determining the relevance and importance of a technosphere process or a cluster of processes in relation to the rest of the industrial network can provide insights into the sustainability of supply chains: those that need to be optimized or controlled/safeguarded. Network analysis (NA) can offer a broad framework of indicators to tackle this problem. In this article, we present a detailed analysis of a life cycle inventory (LCI) model from an NA perspective. Specifically, the network is represented as a directed graph and the “emergy” numeraire is used as the weight associated with the arcs of the network. The case study of a technological system for drinking water production is presented. We investigate the topological and structural characteristics of the network representation of this system and compare properties of its weighted and unweighted network, as well as the importance of nodes (i.e., life cycle unit processes). By identifying a number of advantages and limitations linked to the modeling complexity of such emergy‐LCI networks, we classify the LCI technosphere network of our case study as a complex network belonging to the scale‐free network family. The salient feature of this network family is represented by the presence of “hubs”: nodes that connect with many other nodes. Hub failures may imply relevant changes, decreases, or even breaks in the connectedness with other smaller hubs and nodes of the network. Hence, by identifying node centralities, we can rank and interpret the relevance of each node for its special role in the life cycle network.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Influenza A virus belongs to the family of Orthomyxoviridae. It is an enveloped virus with a negative sense RNA segmented genome that encodes for 11 viral genes. This virus has evolved a number of mechanisms that enable it to invade host cells and subvert the host cell machinery for its own purpose, that is, for the sole production of more virus. Two of the mechanisms that the virus uses are “cap-snatching” and preventing the host cell from expressing its own genes. This mini-review provides a brief overview as to how the virus is able to invade host cells, replicate itself, and exit the host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号