首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The parts played by constant amounts of visible radiation perday and its two components—daylength and intensity—ininfluencing the growth of Cucumis sativus have been investigated.The amount of radiation per day had a far greater influencethan either of its components per se. Nevertheless, small significanteffects of photoperiod were found, leaf expansion and dry weightincrease being greatest at daylengths between 10 and 15 hr.rather than with longer days which, with similar daily totals,would be expected to give the greatest amounts of assimilation. Rates of leaf production and appearance were greatest with thehighest amounts of radiation, but the rates of expansion ofindividual leaves and their maximum areas were greatest withintermediate amounts of radiation. This response resulted inan optimum curve relating the leaf surface and the dry weightattained after a given period to radiation. The amount of radiationgiving the maximum leaf surface and dry weight decreased withage and with external nutrient supply, but at any one age washigher for increase in dry weight than for increase in leafsurface; stem and root tissues responded more to high radiationthan did the leaf surface. The net assimilation rate was a linearfunction of visible radiation over the range of 15–120cal. cm.-2 day-1 explored, the highest value of radiation usedrepresenting the intensity at which photosynthesis would beexpected to be maximal over a 12–15 hr. day. The inhibitory effect of high radiation on leaf expansion andthe resultant influence on the growth of the plant are explainedin terms of the number and intensity of ‘sinks’for carbohydrate and mineral nutrients within the plant.  相似文献   

2.
An investigation was made of the usefulness of old leaves andof some effects of light and nutrition upon their senescence.Three experiments were carried out on plants of Cucumis sativusgrown in growth rooms and in a glasshouse. In the first, theeffects of removing and shading old leaves suggested that theyserve a useful function, not as photosynthetic organs, but assources of substantial quantities of mobile elements which canbe exploited to greater advantage by leaves in more favourablyilluminated positions. In the second experiment, plants weregrown horizontally so that individual leaves could be shadedindependently of their neighbours. Shading hastened senescence.In the third, the effects of light intensity, defoliation, andnutrient deficiency upon the senescence of lower leaves weremeasured. The effects of light seemed to dominate those of nutritionin influencing the speed of senescence. The results are discussed in relation to the concept of theparasitism of lower leaves, the importance of redistributionof minerals, and the control of the course of senescence.  相似文献   

3.
The fixation, utilization, and translocation of carbon and thenet import and export of phosphorus by three leaves of Cucumissativus over the course of their lives were measured in a controlledenvironment. The rate of photosynthesis of a leaf followed a regular dailypattern, rising to a maximum during the first 2 hrs. of thelight period and subsequently falling. Dark respiration wasusually highest at the beginning of the dark period and fellthroughout it. The daily rate of photosynthesis per unit areaof a leaf fell during its later life partly as a result of shadingby upper leaves and also because of an independent age factor.The rate of dark respiration per unit area was high in veryyoung leaves but fell rapidly with age. The amount of phosphorus in each leaf reached a maximum beforethe leaf had reached its maximum dry weight. There was thensubstantial net loss of phosphorus from the leaf. The changing function of each leaf as a sink or source of carbohydrateand mineral nutrients was determined. Four stages were recognized:(1) early development from inception until some time after unfolding,when the leaf was dependent upon imported carbohydate; (2) aperiod of rapid expansion, associated with a high rate of uptakeor mineral nutrients, during which translocation of assimilatedcarbon from the leaf was most rapid; (3) a time of decliningrates of growth, photosynthesis and export of carbon, associatedwith substantial loss of phosphorus; (4) finally, a short sensescentphase with net loss of CO2, terminating in the death of theleaf.  相似文献   

4.
Sugar beet plants were grown for 12 weeks from emergence ingrowth rooms at temperatures of 10, 17, 24 and 31 °C and20, 50, 80, and 110 cal visible radiation cm-2d-1, and the changeswith time in their dry weight, leaf area, leaf numbers, andstorage root sugar determined. The first stage of growth wasdominated by the development of the shoot, but the storage rootgradually assumed increasing importance and eventually grewat a faster rate and to a greater weight than the shoot. Therelative growth rate and final yield of dry matter of the shootwere greatest at 24 °C and of the root between 17 and 24°C. The relative rate of expansion and the final area ofthe leaf surface were also greatest at 24 °C, whilst therates of production and of unfolding of leaves were greatestat about 17 °C. All these attributes were increased withincreased radiation. Net assimilation rate increased almostproportionately with radiation and was not significantly affectedby temperature.The relationships of total leaf area with plantdry weight, root dry weight with shoot dry weight, and totalleaf number with plant dry weight were scarcely affected bychanges in radiation, but were much influenced by temperature.Plants of the same dry weight generally had bigger roots andsmaller areas of leaf surface as temperatures departed from24 °C and had most leaves at 17 °C. Sugar concentrationsin the storage root were greatest at 17 °C, but the totalamount of sugar was about the same at 17 and 24 °C. Theconcentration of sugar in the storage root depended on rootsize.Thus, temperature affected both the rate and pattern ofdevelopment, and radiation affected the rate but not the patternof development.  相似文献   

5.
At temperatures above about 17° C. inflorescence initiationin growing onion plants, as in stored sets, is suppressed whetherthe plants are kept in long or short days. Independently ofcurrent day-length and of previous day-length treatment, ifthe plants are sufficiently large initiation begins very shortlyafter the temperature falls below c. 15° C. Emerged infiorescencesappear some ten or so weeks later. Small plants are unable toinitiate inflores cences under any of the conditions tested,and actual size (perhaps leaf area) rather than leaf or nodenumber seems to be the important factor. Inflorescence emergenceis suppressed at high temperatures in short days or long days;in long days bulb formation also suppresses emergence at lowertemperatures. In long days at temperatures sufficiently lowfor bulbing to be delayed, however, emergence is accelerated.Plants which have produced bulbs in long days in the summershow a delay of inflorescence emergence in the following winter.  相似文献   

6.
1. The effect of temperature on the photosensory latent period in Pholas dactylus is accurately described by the Arrhenius equation when µ = 18,300. 2. The adequacy of this equation has already been found for two other photosensitive animals, Mya and Ciona, which are very similar in behavior to Pholas. The value of µ is different for each of the three species studied. 3. This is taken to mean that though the organization of the receptor process is the same for the three species, the chemical materials concerned are very likely different.  相似文献   

7.
8.
1. A method has been described whereby the intensity of the light of luminous bacteria may be measured in a quantitative manner. 2. It is pointed out that the temperature coefficients for light intensity do not follow the van''t Hoff rule, but are higher and vary with each 10° temperature interval. 3. From a comparison with other data it is found that the process is not a simple one, but that the observed curve is the resultant of several reactions which proceed simultaneously. 4. The discrepancies in the temperature coefficients in the neighborhood of the "optimum temperature" may be due to a process of coagulation of the colloidal particles of the enzyme. This coagulation will tend to cause a deviation of the curve away from that normal for chemical reactions.  相似文献   

9.
10.
11.
Variation in the fatty acid profile of two Listeria monocytogenes strains grown at varying temperatures was determined. The fatty acid profiles varied greatly at different temperatures. General decreases in relative percentages of branched and medium chain (up to C16:0) fatty acids and variable changes in long chain fatty acids were found with increasing growth temperature. Individual fatty acid percentages between strains were variable. The relative percentages of unknown long chain fatty acids, detected in both strains at various temperatures, were greatest in Scott A (7.07%) and ATCC 19114 (13.15%) at 35C. Results demonstrated that L. monocytogenes had altered fatty acid profile in response to changes in growth temperature.  相似文献   

12.
13.
14.
Measurements of leaf initiation, appearance, and expansion arepresented for winter wheat and spring barley crops. For winterwheat, these processes occurred during periods of several weekswhen fluctuating temperatures influenced process rates. Analysisof these measurements was facilitated by plotting variablesagainst the time integral of temperature above an appropriatebase temperature (O °C), here called thermal time with unitsof °C d. Leaf primordial number and appearance stage increasedlinearly with thermal time for both winter wheat and springbarley which initiated 12 and 9 leaves respectively. When plottedagainst thermal time 90% of laminar and leaf length growth and80% of laminar width growth was satisfactorily described bya straight line for both species. This enabled an average extensionrate and duration of linear growth to be defined for each leaf.When expressed in thermal time, wheat leaves had a similar durationof linear growth (210 °C d; s.d. 30 °C d) with insolationexerting a negligible influence. The first seven barley leaveshad a shorter duration of linear growth (151 °C d; s.d.8 °C d). For wheat, final leaf length and laminar widthincreased with leaf number and were not apparently associatedwith changes in apical development stage. Changes of barleyleaf dimensions with leaf number were more complex.  相似文献   

15.
The influence of 113 combinations of temperature (9, 12, 18, 25, 30 C), salinity (5–35 ‰ at 5 ‰ intervals), and light (4 levels) on the mean daily cell division rate (K) of the Narragansett Bay clone of Rhizosolenia fragilissima was examined following appropriate preconditioning. Growth did not occur below 9 C, but was excellent (K =~1.2) under certain combinations of light and salinity at 12, 18, and 25 C. The optimal salinity of 20–25 ‰ was temperature independent. Growth was not measurable at 5 ‰, although survival occurred. At 20 ‰ and 1200 ft-c, K increased approximately 1.8-fold from 0.65 to ~1.2 between 9 and 18–25 C. The optimal light intensity was generally 600 ft-c, although several light-temperature-salinity trends were found. At 10 ‰ at all temperatures, the mean daily division rate decreased with increasing light above 600 ft-c, a response found at all salinities at 12 C, but not at other temperatures. Between 15 and 25 ‰, at 18 and 25 C, mean growth was independent of light intensity; at 30–35 ‰ a direct relationship with light may be present with maximum growth occurring at 1200–1800 ft-c. The in situ and in vitro responses of Rhiz. fragilissima to salinity and the optimum and upper temperature levels are in general agreement. However, growth failure below 9 C in vitro is at odds with reports that natural populations occur even at ?1.11 C. The questions of to what extent this discrepancy reflects the occurrence of thermal clones, different taxa, and/or experimental artifacts are briefly discussed. It is suggested that naturally occurring populations found below 9 C might be designated as Rhiz. fragilissima f. faeröensis, and that Rhiz. fragilissima f. bergonii be used for populations growing at higher temperatures, until this matter is resolved. Observations on auxospore formation are presented.  相似文献   

16.
In the case of the heart of Limulus polyphemus the same magnitude and variation of the temperature coefficient (Q 10) is obtained from the whole heart as from the ganglion alone. From the magnitude of the temperature coefficients and their variation with changes of temperature we may conclude that the rate of the heart beat is determined by alteration of chemical processes in the ganglion cells.  相似文献   

17.
18.
19.
20.
Duvatrienediol is a diterpene specifically occurred in tobacco plants and thought to be a precursor of tobacco aroma. Green tobacco leaves contained 0.2~1% of duvatrienediol per dry weight and it was corresponded to 30~60% of leaf surface lipid. Leaves on upper stalk position contained more of leaf surface lipid and duvatrienediol. In leaves on each stalk position, leaf surface lipid and duvatrienediol contents increased with leaf growth and decreased by over-maturation. Production of leaf surface lipid and duvatrienediol was affected by soil conditions or applied amount of nitrogen fertilizer. Both leaf surface lipid and duvatrienediol were decreased during curing of tobacco leaves, but the change in the latter was more drastic. Comparing to leaf surface lipid, changes in cytoplasmic lipid were less during growth and senescence of tobacco leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号