首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focusses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.  相似文献   

2.
We tested whether brain glycogen reserves were depleted by sleep deprivation (SD) in Long-Evans rats 20-59 days old. Animals were sleep deprived beginning at lights on and then immediately killed by microwave irradiation. Glycogen and glucose levels were measured by a fluorescence enzymatic assay. In all age groups, SD reduced cerebellar glycogen levels by an average of 26% after 6 h of SD. No changes were observed in the cortex after 6 h of SD, but in the oldest animals, 12 h of SD increased cortical glycogen levels. There was a developmental increase in basal glycogen levels in both the cortex and cerebellum that peaked at 34 days and declined thereafter. Robust differences in cortical and cerebellar glycogen levels in response to enforced waking may reflect regional differences in energy utilization and regulation during wakefulness. These results show that brain glycogen reserves are sensitive to SD.  相似文献   

3.
A strong genetic component in the regulation of blood magnesium (Mg) levels has been demonstrated. The regulation and distribution of brain Mg levels, however, have never been assessed. Herein we report on the genetic variation of peripheral and central Mg levels in six inbred strains of mice. In addition, the possible involvement of Mg in sleep regulation was assessed by establishing correlations between Mg and sleep parameters obtained before and after a 6-h sleep deprivation. Although genotype strongly determined blood Mg levels, it did not affect brain Mg, suggesting that central and peripheral Mg are regulated differently. Central Mg displayed a highly structure-specific distribution with frontal cortex having the highest and brain stem the lowest values. Whereas for the amount and distribution of baseline sleep only marginal correlations with Mg were found, Mg contents in four of nine brain structures were highly positively correlated with the length of slow-wave sleep episodes during recovery. This relationship suggests that higher levels of Mg in specific brain sites promote sleep quality as part of a recovery process.  相似文献   

4.
The organization of sleep during and after frequentative convulsions, consisting of 2, 3, or 5 comparatively rare seizures (following one another with a 90-minute interval) or of 3, 5 or 9 comparatively frequent seizures (following one another with a 45-minute interval) of generalized tonic-clonic character in Krushinskii-Molodkina strain rats with inherited predisposition to audiogenic convulsions, was studied. In frequentative convulsions with rare seizures, between separate seizures, passive wakefulness (75.2 +/- 4.6% time) prevailed under low (24.8 +/- 4.3%) slow-wave sleep and full absence of fast-wave sleep. In rats under frequentative convulsions with frequent seizures, in interictal period, only passive wakefulness was observed under reduction of slow-wave sleep and fast-wave sleep, i.e. total sleep deprivation. Minimal latensy of first episodes of the slow-wave sleep after frequentative convulsions was 59.9 +/- 10.8, and of fast-wave sleep: 158.2 +/- 13.4 min. First episodes of slow-wave sleep and fast-wave sleep had normal structure, though they were lesser and shorter than in control experiments. In spite of long-lasting (up to 7 hrs) absence of slow-wave sleep during seizure and prolonged (8.5 hrs) reduction of fast-wave sleep with no subsequent compensatory increase, these conditions occurred in the wakefulness-sleep cycle during 12-hour reconstruction after convulsions. The reconstruction period after frequentative convulsions was characterized by increase in general share of wakefulness and reduction of total slow-wave and fast-wave sleep as compared with control data. Paroxysmal status seems to disorganize work of the brain somnogenic structures. The function of systems responsible for slow-wave sleep are affected to a lesser extent, but disorganization of the system responsible for fast-wave sleep is more significant and associated with mechanisms of starting the phase of sleep in the first place.  相似文献   

5.
6.
Administration of a single non-convulsive dose of insulin (1.0, I.U./kg., I.P.) which produced no observable gross behavioral changes in rats, reduced rapid eye movement (REM) sleep time 100% in the first 3 hrs. and 82% by the 4th hr., reaching control subject levels (saline-treated) by the 6th hr. In contrast, slow-wave sleep (NREM) time in insulin treated animals exceeded control subject levels by 49% by the end of the 2nd hr., returning to normal by the 5th hr. Although there was no difference between insulin and saline treated rats for the total 8 hr. post-injection recording period for total percentage of time awake, or slow-wave sleep time, a 44% reduction in REM sleep time was observed in insulin treated animals compared to that of a saline treated control. The significance of these findings are discussed in terms of known neurochemical changes i.e., an increase of both brain tryptophan and serotonin in rats, induced by a subconvulsive dose of exogenous insulin.  相似文献   

7.
One function of sleep is thought to be the restoration of energy stores in the brain depleted during wakefulness. One such energy store found in mammalian brains is glycogen. Many of the genes involved in glycogen regulation in mammals have also been found in Drosophila melanogaster and rest behavior in Drosophila has recently been shown to have the characteristics of sleep. We therefore examined, in the fly, variation in the glycogen contents of the brain, the whole head and the body throughout the rest/activity cycle and after rest deprivation. Glycogen in the brain varies significantly throughout the day (p=0.001) and is highest during rest and lowest while flies are active. Glycogen levels in the whole head and body do not show diurnal variation. Brain glycogen drops significantly when flies are rest deprived for 3 h (p=0.034) but no significant differences are observed after 6 h of rest deprivation. In contrast, glycogen is significantly depleted in the body after both 3 and 6 h of rest deprivation (p<0.0001 and p<0.0001, respectively). Glycogen in the fly brain changes in relationship to rest and activity and demonstrates a biphasic response to rest deprivation similar to that observed in mammalian astrocytes in culture.  相似文献   

8.
We investigated whether glucocorticoids [i.e., corticosterone (Cort) in rats] released during sleep deprivation (SD) affect regional brain glycogen stores in 34-day-old Long-Evans rats. Adrenalectomized (with Cort replacement; Adx+) and intact animals were sleep deprived for 6 h beginning at lights on and then immediately killed by microwave irradiation. Brain and liver glycogen and glucose and plasma glucose levels were measured. After SD in intact animals, glycogen levels decreased in the cerebellum and hippocampus but not in the cortex or brain stem. By contrast, glycogen levels in the cortex of Adx+ rats increased by 43% (P < 0.001) after SD, while other regions were unaffected. Also in Adx+ animals, glucose levels were decreased by an average of 28% throughout the brain after SD. Intact sleep-deprived rats had elevations of circulating Cort, blood, and liver glucose that were absent in intact control and Adx+ animals. Different responses between brain structures after SD may be due to regional variability in metabolic rate or glycogen metabolism. Our findings suggest that the elevated glucocorticoid secretion during SD causes brain glycogenolysis in response to energy demands.  相似文献   

9.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

10.
Steriade M  Timofeev I 《Neuron》2003,37(4):563-576
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that, during natural slow-wave sleep oscillations or their experimental models, both thalamic and cortical neurons progressively enhance their responsiveness. This potentiation lasts for several minutes after the end of oscillatory periods. Cortical neurons display self-sustained activity, similar to responses evoked during previous epochs of stimulation, despite the fact that thalamic neurons remain under a powerful hyperpolarizing pressure. These data suggest that, far from being a quiescent state during which the cortex and subcortical structures are globally inhibited, slow-wave sleep may consolidate memory traces acquired during wakefulness in corticothalamic networks. Similar phenomena occur as a consequence of fast oscillations during brain-activated states.  相似文献   

11.
Ventilation and brain blood flow (BBF) were simultaneously measured during carbon monoxide (CO) inhalation in awake and sleeping goats up to HbCO levels of 40%. Unilateral BBF, which was continuously measured with an electromagnetic flow probe placed around the internal maxillary artery, progressively increased with CO inhalation in the awake and both sleep stages. The increase in BBF with CO inhalation during rapid-eye-movement (REM) sleep (delta BBF/delta arterial O2 saturation = 1.34 +/- 0.27 ml X min-1 X %-1) was significantly greater than that manifested during wakefulness (0.87 +/- 0.14) or slow-wave sleep (0.92 +/- 0.13). Ventilation was depressed by CO inhalation during both sleep stages but was unchanged from base-line values in awake goats. In contrast to slow-wave (non-REM) sleep, the ventilatory depression of REM sleep was primarily due to a reduction in tidal volume. Since tidal volume is more closely linked to central chemoreceptor function, we believe that these data suggest a possible role of the increased cerebral perfusion during hypoxic REM sleep. Induction of relative tissue alkalosis at the vicinity of the medullary chemoreceptor may contribute to the ventilatory depression exhibited during this sleep period.  相似文献   

12.
Variations of the brain cortex redox state potential (E) were recorded in freely moving white rats (mass of 300-350 g) with implanted platinum electrodes (with the platinum reference electrode in the nasal bone) during sleep-wake cycles. It was found that transitions from the slow-wave sleep to wakefulness were accompanied in the number of cortical areas (metabolic-active sites) by the E rise, while the transitions from the wakefulness to slow-ware sleep were associated with a drop of E. However, the episodes of the short-term arousals during the slow-wave sleep were accompanied by the respective decreases in E thus forming the irregular E variations (1.5-3 min in duration). It was also found that the oscillations of a typical pattern (quasisinusoidal with the frequency of 10-20 osc/min and the amplitudes up to several mV) could take place in the metabolic-active cortical sites. These oscillations were defined as fast E oscillations. During the slow-wave sleep, the less regular oscillations with the lower frequency (1.2-10 osc/min) and higher amplitude were recorded in the same cortical sites. These oscillations were defined as slow. It is suggested that the fast metabolic oscillations of wakefulness are mainly controlled by the mitochondria of neuronal populations, whereas the slow metabolic oscillations which occur in the slow-wave sleep are related with glycolysis in populations of glial cells.  相似文献   

13.
Brain glycogen re-awakened   总被引:8,自引:0,他引:8  
The mammalian brain contains glycogen, which is located predominantly in astrocytes, but its function is unclear. A principal role for brain glycogen as an energy reserve, analogous to its role in the periphery, had been universally dismissed based on its relatively low concentration, an assumption apparently reinforced by the limited duration that the brain can function in the absence of glucose. However, during insulin-induced hypoglycaemia, where brain glucose availability is limited, glycogen content falls first in areas with the highest metabolic rate, suggesting that glycogen provides fuel to support brain function during pathological hypoglycaemia. General anaesthesia results in elevated brain glycogen suggesting quiescent neurones allow glycogen accumulation, and as long ago as the 1950s it was shown that brain glycogen accumulates during sleep, is mobilized upon waking, and that sleep deprivation results in region-specific decreases in brain glycogen, implying a supportive functional role for brain glycogen in the conscious, awake brain. Interest in brain glycogen has recently been re-awakened by the first continuous in vivo measurements using NMR spectroscopy, by the general acceptance of metabolic coupling between glia and neurones involving intercellular transfer of energy substrate, and by studies supporting a prominent physiological role for brain glycogen as a provider of supplemental energy substrate during periods of increased tissue energy demand, when ambient normoglycaemic glucose is unable to meet immediate energy requirements.  相似文献   

14.
15.
Sleep has been functionally implicated in brain energy homeostasis in that it could serve to replenish brain energy stores that become depleted while awake. Sleep deprivation (SD) should therefore lower brain glycogen content. We tested this hypothesis by sleep depriving mice of three inbred strains, i.e., AKR/J (AK), DBA/2J (D2), and C57BL/6J (B6), that differ greatly in their sleep regulation. After a 6-h SD, these mice and their controls were killed by microwave irradiation, and glycogen and glucose were quantified in the cerebral cortex, brain stem, and cerebellum. After SD, both measures significantly increased by approximately 40% in the cortex of B6 mice, while glycogen significantly decreased by 20-38% in brain stem and cerebellum of AK and D2 mice. In contrast, after SD, glucose content increased in all three structures in AK mice and did not change in D2 mice. The increase in glycogen after SD in B6 mice persisted under conditions of food deprivation that, by itself, lowered cortical glycogen. Furthermore, the strains that differ most in their compensatory response to sleep loss, i.e., AK and D2, did not differ in their glycogen response. Thus glycogen content per se is an unlikely end point of sleep's functional role in brain energy homeostasis.  相似文献   

16.
The study examines correlation between the degree of stenosis of the internal carotid artery (ICA) and the night sleep parameters. The possible neurophysiological mechanisms of sleep disorder in blood flow disturbances in the carotid system are also discussed. Twenty-four patients (19 men and 5 women) were examined, including 6 cases of 50% ICA stenosis, 7 cases of 50–70% ICA stenosis; and 11 cases of ICA occlusion. A polygraphic study of night sleep was conducted and the sleep stages were analyzed. The patients filled in the quality of sleep questionnaire with the presence of the somnolence scoring system. In order to assess brain perfusion, single-photon emission CT imaging of the brain was performed. The results of the study showed that the night sleep structure in the cases of 50% ICA stenosis was unchanged: all the sleep phases and stages whose quantitative parameters corresponded to the reference normal data were recorded, or only stage II sleep representation declined; in the cases of 50–70% ICA stenosis, predominantly stage II sleep and slow-wave sleep were compromised; in patients with ICA occlusion, slow-wave sleep and REM-sleep (45% of cases) were disturbed.  相似文献   

17.
Studies were carried out on cats by bipolar electrodes implanted into symmetrical points of somatosensory cortical areas, caudate nuclei, hippocampus, lateral geniculate bodies, reticular formation of the midbrain after section of the half of midbrain tegmentum and commissural systems of the brain. Animals with sections usually have asymmetry of sleep EEG. The phenomenon is revealed of the coexistence of slow-wave and paradoxal sleep in different brain halves.  相似文献   

18.
Studies of expression of molecular chaperones of the family of Heat Shock Proteins 70 kDa (HSP70) in the mouse and rat brain during sleep deprivation do not answer the question whether the HSP70 produce somnogenic effect. In the present work there are studied effects of exogenous Hsp70 that is known to be able to penetrate into living cells in vitro and to acquire properties of endogenous chaperone. Hsp70 was microinjected into the third brain ventricle of rats and pigeons at the beginning of the inactive period of the day when under natural conditions the sleep duration increases and the somato-visceral parameters decrease. Hsp70 was found to enhance this natural process and to produce an additional increase in the total time of slow-wave sleep, a more pronounced inhibition of the muscle contractive activity, and a deeper decrease in the brain temperature. A similarity in effects of Hsp70 in rats and pigeons was revealed. In both species the somnogenic effect of Hsp70 in is realized by activation of mechanisms of maintenance of in longer episodes of in slow-wave sleep. The hypothermic Hsp70 effect seems to be associated with a decrease in the muscle contractive activity level, rather than with an enhancement in peripheral vasodilation and with an increase of heat loss. A hypothesis is put forward that the neuroleptic effect of Hsp70 that includes the somnogenic, myorelaxing, and hypothermic effects is mediated by activation of GABAA receptors of the main inhibitory brain system.  相似文献   

19.
Slow-wave sleep: serotonin, neuronal plasticity, and seizures   总被引:4,自引:0,他引:4  
  相似文献   

20.
Studies of expression of molecular chaperones of the family of Heat Shock Proteins 70 kDa (HSP70) in the mouse and rat brain during sleep deprivation do not answer the question whether the HSP70 produce somnogenic effect. In the present work there are studied effects of exogenous Hsp70 that is known to be able to penetrate into living cells in vitro and to acquire properties of endogenous chaperone. Hsp70 was microinjected into the third brain ventricle of rats and pigeons at the beginning of the non-active 24-h phase when under natural conditions the sleep duration increases and the somato-visceral parameters decrease. Hsp70 has been established to enhance this natural process and to produce an additional increase of the total time of slow-wave sleep, a more pronounced inhibition of the muscle contractive activity, and a deeper decrease of the brain temperature. A similarity in effects of Hsp70 in rats and pigeons has been revealed. In both species the somnogenic Hsp70 action is realized by activation of mechanisms of maintenance of the longer episodes of the slow-wave sleep. The hypothermic Hsp70 effect seems to be associated with a decrease of the muscle contractive activity level, rather than with an enhancement of peripheral vasodilation and with an increase of heat loss. A hypothesis is put forward that the hyposedative/neuroleptic-like Hsp70 action that includes the somnogenic, myorelaxing, and hypothermic effects is mediated by activation of GABAA receptors of the main inhibitory brain system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号