首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubilin and megalin are multiligand epithelial endocytic receptors well characterized in the adult kidney and ileum where they form a complex essential for protein, lipid and vitamin uptake. Although inactivation of the megalin gene leads to holoprosencephaly and administration of anti-cubilin antibodies induces fetal resorptions or cranio-facial malformations their function in the developing embryo remains unclear. We recently showed that both proteins are strongly expressed by the maternal-fetal interfaces and the neuroepithelium of the early rodent embryo where they co-localize and form a complex important for nutrient uptake. The aim of the present study was the further investigation of cubilin expression at later developmental stages of the rodent embryo and its correlation to that of megalin. Immunohistochemical and in situ hybridization analysis showed striking similarities in the spatial and temporal expression patterns of cubilin and megalin. The electrophoretic mobility of both proteins was identical to that of the adult as revealed by Western blot analysis. Cubilin and megalin were strongly expressed in the sensory organs, the central nervous system, the respiratory and urogenital tracts as well as in the thymus, parathyroids and thyroid. In each site, the expression mainly concerned epithelial structures and correlated with the onset of epithelial induction. Depending on the site, a decreased or restricted expression was observed by the end of the gestation for both proteins.  相似文献   

2.
Spermatozoa maturation and capacitation occurring in the male and female reproductive tracts, respectively, involves the remodeling of the spermatozoa plasma membrane. Apolipoprotein J (apoJ) and apolipoprotein A-I (apoA-I) have been implicated in the process of lipid exchange from the spermatozoa plasma membrane to epithelial cells lining the male reproductive tract. Evidence suggests that this process is mediated by the cooperative action of the endocytic lipoprotein receptors megalin and cubilin, which are expressed at the apical surface of absorptive epithelia in various tissues, including the efferent ducts and epididymis. Here, we investigated the possibility that these receptors and their lipid-binding ligands, apoJ and apoA-I, might function similarly in the female reproductive tract. We show that megalin and cubilin are expressed in the uterine epithelium at all stages of the estrous cycle, maximally during estrous and metestrous stages. In the oviduct, there is pronounced expression of both megalin and cubilin in the nonciliated cells of the proximal oviduct and epithelial cells of the distal oviduct, particularly during estrous and metestrous stages. In both uterine and oviduct epithelial cells, megalin and cubilin were located on the apical regions of the cells, consistent with a distribution at the cell surface and in endosomes. ApoJ and apoA-I were both detected in apical regions of uterine and oviduct epithelial cells. Secretory cells of the uterine glands were found to express apoJ and apoA-I suggesting that the glands are a site of synthesis for both proteins. In summary, our findings indicate that megalin and cubilin function within the female reproductive tract, possibly mediating uterine and oviduct epithelial cell endocytosis of apoJ/apoA-I-lipid complexes and thus playing a role in lipid efflux from the sperm plasma membrane, a major initiator of capacitation.  相似文献   

3.
为研究NO在胚胎植入中的作用机理 ,本文采用子宫角注射、原位杂交及Westernblot方法研究了一氧化氮 (NO)在小鼠胚胎植入过程中对血管内皮生长因子 (VEGF)及其受体表达的调节。受试小鼠于妊娠第三天 (D3 )在一侧子宫角内注射一氧化氮合酶 (NOS)抑制剂N 硝基 L 精氨酸甲酯 (L NAME)或者L NAME与NO的供体硝普钠 (SNP)合用 ,另一侧子宫角为对照侧 ;收集并分别检测了D5,D6和D7天小鼠子宫中VEGF及其受体mRNA和蛋白的表达情况。结果显示 :与对照侧相比 ,L NAME处理后小鼠胚胎围植入期子宫中VEGF及其受体mRNA的表达有不同程度的下降 ;对VEGF及其受体蛋白表达水平检测表明 ,抑制的NO产生也使VEGF及其受体蛋白在小鼠围植入期子宫中的表达有不同程度的降低。当NOS抑制剂和NO的供体SNP同时注射小鼠时 ,VEGF及其受体mRNA和蛋白表达都恢复到正常水平。以上结果表明 ,在小鼠胚胎植入中NO可通过调节VEGF及其受体的表达参与血管新生 ,从而对胚胎植入起到调节作用  相似文献   

4.
FGF receptor (FGFR) function is essential during peri-implantation mouse development. To understand which receptors are functioning, we tested for the expression of all four FGF receptors in peri-implantation blastocysts. By RT-PCR, FGFR-3 and FGFR-4 were detected at high levels, FGFR-2 at lower levels, and FGFR-1 was detected at background levels compared to control tissues. Because FGFR-3 and FGFR-4 were detected at the highest levels, we studied these in detail. Between 3.5 days after fertilization (E3.5) and E6.0, FGFR-4 mRNA was detected ubiquitously in the peri-implantation embryo, restricted to the inner cell mass (ICM) and its derivatives and primitive endoderm by E6.0, and was not detected at E6.5. FGFR-3 mRNA was detected ubiquitously in the peri-implantation embryo with a tendency towards extraembryonic cells. We tested blastocyst outgrowths, a model for implantation, for FGFR-3 and FGFR-4 protein. FGFR-3 protein was detected in all cells early during the outgrowth. Later, FGFR-3 was detected in the extraembryonic endoderm and trophoblast giant cells (TGC), but not in the ICM. FGFR-4 protein was detected in all cells of the implanting embryo, but was restricted to the ICM/primitive endoderm in later stage outgrowths. The distribution of the receptor proteins in the blastocyst outgrowths is similar to the distribution of the mRNA detected by in situ hybridization of sections of embryos. The data suggest roles for FGFR-3 and FGFR-4 in peri-implantation development. Mol. Reprod. Dev. 51:254–264, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Clara cell secretory protein (CCSP) is a transport protein for lipophilic substances in bronchio-alveolar fluid, plasma, and uterine secretion. It acts as a carrier for steroid hormones and polychlorinated biphenyl metabolites. Previously, the existence of receptors for uptake of CCSP.ligand complexes into the renal proximal tubules had been suggested. Using surface plasmon resonance analysis, we demonstrate that CCSP binds to cubilin, a peripheral membrane protein on the surface of proximal tubular cells. Binding to cubilin results in uptake and lysosomal degradation of CCSP in cultured cells. Surprisingly, internalization of CCSP is blocked not only by cubilin antagonists but also by antibodies directed against megalin, an endocytic receptor that does not bind CCSP but associates with cubilin. Consistent with a role of both receptors in renal uptake of CCSP in vivo, patients deficient for cubilin or mice lacking megalin exhibit a defect in tubular uptake of the protein and excrete CCSP into the urine. These findings identify a cellular pathway consisting of a CCSP-binding protein (cubilin) and an endocytic coreceptor (megalin) responsible for tissue-specific uptake of CCSP and associated ligands.  相似文献   

6.
Cubilin has recently been shown to function as an endocytic receptor for high density lipoproteins (HDL). The lack of apparent transmembrane and cytoplasmic domains in cubilin raises questions as to the means by which it can mediate endocytosis. Since cubilin has been reported to bind the endocytic receptor megalin, we explored the possibility that megalin acts in conjunction with cubilin to mediate HDL endocytosis. While megalin did not bind to HDL, delipidated HDL, or apoA-I, it was found to copurify with cubilin isolated by HDL-Sepharose affinity chromatography. Cubilin and megalin exhibited coincident patterns of mRNA expression in mouse tissues including the kidney, ileum, thymus, placenta, and yolk sac endoderm. The expression of both receptors in yolk sac endoderm-like cells was inducible by retinoic acid treatment but not by conditions of sterol depletion. Suppression of megalin activity or expression by treatment with either megalin antibodies or megalin antisense oligodeoxynucleotides resulted in inhibition of cubilin-mediated endocytosis of HDL. Furthermore, megalin antisense oligodeoxynucleotide treatment resulted in reduced cell surface expression of cubilin. These data demonstrate that megalin acts together with cubilin to mediate HDL endocytosis and further suggest that megalin may play a role in the intracellular trafficking of cubilin.  相似文献   

7.
Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.  相似文献   

8.
Surfactant-like particles (SLP) are unilamellar secreted membranes associated with the process of lipid absorption and isolated previously only from the apical surface of enterocytes. In this paper, the intracellular membrane has been isolated from corn oil-fed animals, identified by its content of the marker protein intestinal alkaline phosphatase (IAP). Another brush-border protein, cubilin, and its anchoring protein megalin have been identified as components of extracellular SLP, but only cubilin is present to any extent in intracellular SLP. During fat absorption, IAP is modestly enriched in intracellular SLP, but full-length cubilin (migrating at 210 kDa in fat-fed mucosal fractions) falls by one-half, although fragments of cubilin are abundant in the intracellular SLP. Both IAP and cubilin colocalize to the same cells during corn oil absorption and colocalize around lipid droplets. This localization is more intense during feeding of corn oil with Pluronic L-81, a detergent that allows uptake of fatty acids and monoglycerides from the lumen, but blocks chylomicron secretion. Confocal microscopy confirms the colocalization of IAP and the ligand for cubilin, intrinsic factor. Possible roles for cubilin in intracellular SLP include facilitating movement of the lipid droplet through the cell and binding to the basolateral membrane before reverse endocytosis.  相似文献   

9.
The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.Key words: Endocytic receptor, frog, kidney, lysozyme, protein uptake, proximal tubule  相似文献   

10.
11.
Megalin is a low-density lipoprotein receptor-related protein (LRP2) expressed in the neuroepithelium and the yolk sac of the early embryo. Absence of megalin expression in knockout mice results in holoprosencephaly, indicating an essential yet unidentified function in forebrain development. We used mice with complete or conditional megalin gene inactivation in the embryo to demonstrate that expression of megalin in the neuroepithelium but not in the yolk sac is crucial for brain development. During early forebrain development, megalin deficiency leads to an increase in bone morphogenic protein (Bmp) 4 expression and signaling in the rostral dorsal neuroepithelium, and a subsequent loss of sonic hedgehog (Shh) expression in the ventral forebrain. As a consequence of absent SHH activity, ventrally derived oligodendroglial and interneuronal cell populations are lost in the forebrain of megalin-/- embryos. Similar defects are seen in models with enhanced signaling through BMPs, central regulators of neural tube patterning. Because megalin mediates endocytic uptake and degradation of BMP4, these findings indicate a role for megalin in neural tube specification, possibly by acting as BMP4 clearance receptor in the neuroepithelium.  相似文献   

12.
Cubilin is a peripheral membrane protein that cooperates with the endocytic receptor megalin to mediate endocytosis of ligands in various polarized epithelia. Megalin is expressed in the male reproductive tract where it has been implicated in the process of sperm membrane remodeling. A potential role for cubilin in the male reproductive tract has not been explored. Using RT-PCR, we found that cubilin and megalin mRNAs are expressed in the efferent ducts, corpus and cauda epididymis, and proximal and distal vas deferens. Immunohistological analysis revealed that cubilin was expressed in nonciliated cells of the efferent ducts, principal cells of the corpus and cauda epididymis and vas deferens. Immunogold EM showed cubilin in endocytic pits, endocytic vesicles, and endosomes of these cells. The expression profile of cubilin in the male reproductive tract was coincident with that of megalin except in principal cells of the caput epididymis. Double immunogold labeling showed that cubilin and megalin co-localized within the endocytic apparatus and recycling vesicles of efferent duct cells. Neither protein was found in lysosomes. Injection of RAP, an antagonist of megalin interaction with cubilin, reduced the level of intracellular cubilin in cells of the efferent ducts and vas deferens. In conclusion, cubilin and megalin are co-expressed in cells of the epididymis and vas deferens and the endocytosis of cubilin in these tissues is dependent on megalin. Together, these findings highlight the potential for a joint endocytic role for cubilin and megalin in the male reproductive tract.  相似文献   

13.
In this study, we describe an experimental system based on intravital two-photon microscopy for studying endocytosis in live animals. The rodent submandibular glands were chosen as model organs because they can be exposed easily, imaged without compromising their function and, furthermore, they are amenable to pharmacological and genetic manipulations. We show that the fibroblasts within the stroma of the glands readily internalize systemically injected molecules such as fluorescently conjugated dextran and BSA, providing a robust model to study endocytosis. We dynamically image the trafficking of these probes from the early endosomes to the late endosomes and lysosomes while also visualizing homotypic fusion events between early endosomes. Finally, we demonstrate that pharmacological agents can be delivered specifically to the submandibular salivary glands, thus providing a powerful tool to study the molecular machinery regulating endocytosis in a physiological context.  相似文献   

14.
Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.  相似文献   

15.
16.
Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, although it is mainly considered as a regulator of reproduction and cell growth. Null mutation of the prolactin receptor (PRLR) gene leads to female sterility due to a failure of embryo implantation. Using this mouse model and the method of mRNA differential display, we identified PRL target genes that are regulated during the peri-implantation period. We characterized 1 among the 45 isolated genes, UA-3, which is regulated in the uterus as well as in the ovary during early pregnancy. This gene corresponds to a P311 mouse cDNA that was originally identified for its high expression in late-stage embryonic brain and adult cerebellum. We report here that UA-3 is present in numerous tissues as well as in ovary and uterus at the site of blastocyst apposition, and that its expression is hormonally regulated. Moreover, in situ hybridization reveals high expression in ovarian granulosa cells and in uterine epithelium. Recently, it has been suggested that P311 expression is tightly regulated at several levels by mechanisms that control cellular growth, transformation, motility, or a combination of these. Taken together, these results suggest that P311 could be involved in these processes during pregnancy, although its function remains to be clearly established.  相似文献   

17.
Regulated expression of osteopontin in the peri-implantation rabbit uterus   总被引:5,自引:0,他引:5  
Blastocyst attachment to the lining of the mammalian uterus during early implantation involves the initial apposition of the trophoblast to the uterine epithelial surface. Osteopontin (OPN) is a glycoprotein component of the extracellular matrix that is secreted by the glandular epithelium of mammalian uteri at the time of implantation. This protein is recognized by several members of the integrin family and promotes cell-cell attachment and adhesion. In the present study, rabbit uteri were examined using Northern and in situ hybridization to evaluate the temporal and spatial distribution of OPN mRNA during early pregnancy. Northern blot analysis demonstrated a dramatic increase in OPN expression on Days 4-7 of pregnancy, corresponding to the rise in circulating progesterone and the time of initial embryo attachment in this species. In situ hybridization analysis revealed OPN mRNA expression on Day 6.75 of pregnancy, which was most prominent on endometrial epithelium. Using immunofluorescence, OPN protein was present on the glandular epithelium on Day 6.75 of pregnancy, but was absent on blastocysts. Further, no expression of OPN mRNA or protein was found in the nonpregnant endometrium. Induction of endometrial OPN expression was observed in unmated rabbits treated with progesterone alone and was prevented by cotreatment with the antiprogestin ZK137.316. Estradiol-17beta had no effect on OPN expression by itself, and estrogen priming was not necessary to demonstrate the stimulatory effect of progesterone. In The rabbit uterus, as in other mammalian species studied, OPN is expressed in a stage-specific manner by the endometrial glands during the peri-implantation period and is regulated by progesterone.  相似文献   

18.
We show here that a secreted EGF-Discoidin-domain protein, Xenopus Del1 (xDel1), is an essential factor for dorsal development in the early Xenopus embryo. Knockdown of the xDel1 function causes obvious ventralization of the embryo. Conversely, overexpression of xDel1 expands dorsal-marker expression and suppresses ventral-marker expression in the gastrula embryo. Forced expression of xDel1 dorsalizes ventral marginal zone explants, whereas it weakly induces neural differentiation but not mesodermal differentiation in animal caps. The dorsalizing activity of xDel1 is dependent on the Discoidin domains and not on the RGD motif (which is implicated in its angiogenic activity) or EGF repeats. Luciferase assays show that xDel1 attenuates BMP-signaling reporter activity by interfering with the pathway downstream of the BMP receptor. Thus, xDel1 functions as a unique extracellular regulatory factor of DV patterning in early vertebrate embryogenesis.  相似文献   

19.
The structure and function of Niemann-Pick C1-like 1 protein   总被引:1,自引:0,他引:1  
  相似文献   

20.
Galectin-3 is a lectin important in animal development and regulatory processes and is found selectively localized at the implantation site of the mouse embryo. To better understand the role of galectin-3 at the maternal-fetal interface, a binding partner was isolated and characterized. Homogenates of uteroplacental tissue were incubated with immobilized recombinant galectin-3, and specifically bound proteins were eluted using lactose. The principal protein, p400, had an M(r) of 400,000 in SDS-PAGE. Physical properties of p400 and amino acid sequences of seven tryptic peptides were similar to cubilin from rats, humans, and dogs, identifying p400 as the murine ortholog of cubilin. This was further supported by the tissue distribution observed only in yolk sac, kidney, and ileum with monospecific antiserum for p400. Cubilin occurred in yolk sac epithelium throughout pregnancy, but galectin-3 was there only during the last week. Unexpectedly, cubilin was found only in perforin-containing granules of uterine natural killer (uNK) cells, although galectin-3 occurred throughout the cell cytoplasm. In situ hybridization revealed cubilin mRNA in yolk sac epithelium but not uNK cells, implying that yolk sac-derived cubilin is endocytosed by uNK cells via galectin-3. This is consistent with cubilin being an endogenous partner of galectin-3 at the maternal-fetal interface and suggests an important role for cubilin in uNK cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号