首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of aurintricarboxylic acid (ATA) were examined on the DNA binding properties of rat liver glucocorticoid-receptor complex. The DNA-cellulose binding capacity of the glucocorticoid-receptor complex was completely abolished by a pretreatment of receptor preparation with 0.1-0.5 mM ATA at 4 degrees C. The half-maximal inhibition (i.d.50) in the DNA binding of [3H]triamcinolone acetonide-receptor complex [( 3H]TARc) was observed at 130- and 40 microM ATA depending upon whether the inhibitor was added prior to or following the receptor activation. The entire DNA-cellulose bound [3H]TARc could be extracted in a concentration-dependent manner by incubation with 2-100 microns ATA. The [3H]TARc remained intact under the above conditions, the receptor in both control and ATA-treated preparations sedimented in the same region in salt-containing 5-20% sucrose gradients. The action of ATA appeared to be on the receptor and not on DNA-cellulose. The DNA-binding capacity of ATA-treated receptor preparations could be recovered upon exhaustive dialysis. The treatment with ATA did not appear to change the ionic behavior of heat activated GRc; the receptor in both control and the ATA-treated preparations showed similar elution profiles. Therefore, ATA appears to alter the binding to and dissociation of glucocorticoid-receptor complex from DNA. The use of ATA should offer a good chemical probe for analysis of the DNA binding domain(s) of the glucocorticoid receptor.  相似文献   

2.
Three subtypes of retinoic acid receptors (RAR), termed RAR alpha, RAR beta, and RAR gamma, have been described. They are composed of different structural domains, including distinct domains for DNA and ligand binding. RARs specifically bind all-trans-retinoic acid (RA), 9-cis-RA, and retinoid analogs. In this study, we examined the functional role of cysteine and arginine residues in the ligand-binding domain of hRAR alpha (hRAR alpha-LBD, amino acids 154 to 462). All conserved cysteine and arginine residues in this domain were mutated by site-directed mutagenesis, and the mutant proteins were characterized by blocking reactions, ligand-binding experiments, transactivation assays, and protease mapping. Changes of any cysteine residue of the hRAR alpha-LBD had no significant influence on the binding of all-trans RA or 9-cis RA. Interestingly, residue C-235 is specifically important in antagonist binding. With respect to arginine residues, only the two single mutations of R-276 and R-394 to alanine showed a dramatic decrease of agonist and antagonist binding whereas the R272A mutation showed only a slight effect. For all other arginine mutations, no differences in affinity were detectable. The two mutations R217A and R294A caused an increased binding efficiency for antagonists but no change in agonist binding. From these results, we can conclude that electrostatic interactions of retinoids with the RAR alpha-LBD play a significant role in ligand binding. In addition, antagonists show distinctly different requirements for efficient binding, which may contribute to their interference in the ligand-inducible transactivation function of RAR alpha.  相似文献   

3.
In vitro binding of retinoids to the nuclear retinoic acid receptor alpha   总被引:1,自引:0,他引:1  
We describe a rapid method for measuring in vitro binding properties of new synthetic retinoids to the recently identified nuclear receptor RAR alpha. Transfection of cos-7 cells with the expression vector RAR alpha O produces a 100-fold increase in intracellular RAR alpha concentration which allows us to perform accurate determination of binding parameters of various retinoids. Cytosol and nuclear extracts obtained after freeze drying of the transfected cells are incubated with a new stable tritiated analog of retinoic acid, [3H]CD367. Complete separation between RAR alpha and endogenous cellular retinoic acid binding protein is achieved by high-performance size-exclusion chromatography. These improved techniques provide a useful method for determining binding affinities of analogs to RAR alpha.  相似文献   

4.
5.
6.
To uncover the mechanisms relating to the anticancer effect of retinoic acids in gastric cancer cells, the mediation of activator protein-1 (AP-1) activity repression by retinoic acid receptors (RARs) was investigated. All-trans retinoic acid (ATRA) inhibited AP-1 activity in BGC-823 cells (RARalpha(+), RARbeta(+)), but not in MKN-45 cells (RARalpha(lo), RARbeta(-)). Transient transfection of RARbeta expression vector into MKN-45 cells significantly resulted in direct repression of AP-1 activity in a receptor concentration-dependent manner, and this could be strengthened by ATRA. Stable transfection of RARbeta into MKN-45 cells directly inhibited cell growth and colony formation, and ATRA also enhanced these effects. Transient transfection of RARalpha into MKN-45 cells however, displayed receptor concentration-dependent AP-1 activity inhibition only in the presence of ATRA. Stable transfection of RARalpha into MKN-45 cells resulted in ATRA-dependent inhibition of cell growth and colony formation. For AP-1 binding activity induced by TPA, the repressive effect of ATRA was only observed in BGC-823 and RARalpha and RARbeta stably transfected MKN-45 cells, but not in intact MKN-45 cells. This indicates the necessity for sufficient cellular RARalpha and/or RARbeta in order for AP-1 activity repression to occur. Deletion of DNA binding domain (DBD) of RARbeta, but not ligand binding domain (LBD), eliminated the anti-AP-1 function of RARbeta. It is therefore concluded that both RARalpha and RARbeta are mediators in the anticancer function of ATRA via AP-1 activity inhibition, and that RARbeta, not RARalpha, can inhibit AP-1 activity to a certain extent directly by itself. Thus DBD, not LBD, is critical for anti-AP-1 activity.  相似文献   

7.
Negative selection refers to the selective deletion of autoreactive thymocytes. Its molecular mechanisms have not been well defined. Previous studies in our laboratory have demonstrated that retinoic acids, physiological ligands for the nuclear retinoid receptors, selectively inhibit TCR-mediated death under in vitro conditions, and the inhibition is mediated via the retinoic acid receptor (RAR) alpha. The present studies were undertaken to investigate whether ligation of RARalpha leads to inhibition of TCR-mediated death in vivo and to identify the molecular mechanisms involved. Three models of TCR-mediated death were studied: anti-CD3-mediated death of thymocytes in wild-type mice, and Ag- and bacterial superantigen-driven thymocyte death in TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c in the context of the E(k) (class II MHC) molecule. Our data demonstrate that the molecular program of both anti-CD3- and Ag-driven, but not that of superantigen-mediated apoptosis involves up-regulation of nur77, an orphan nuclear receptor, and bim, a BH3-only member of the proapoptotic bcl-2 protein family, proteins previously implicated to participate in the negative selection. Ligation of RARalpha by the synthetic agonist CD336 inhibited apoptosis, DNA binding of nur77, and synthesis of bim induced by anti-CD3 or the specific Ag, but had no effect on the superantigen-driven cell death. Our data imply that retinoids are able to inhibit negative selection in vivo as well, and they interfere with multiple steps of the T cell selection signal pathway.  相似文献   

8.
9.
Plasticity of the ecdysone receptor DNA binding domain   总被引:3,自引:0,他引:3  
Ecdysteroids coordinate molting and metamorphosis in insects via a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle (Usp) protein. Here we show how the DNA-recognition alpha-helix and the T box region of the EcR DNA-binding domain (EcRDBD) contribute to the specific interaction with the natural response element and to the stabilization of the EcRDBD molecule. The data indicate a remarkable mutational tolerance with respect to the DNA-binding function of the EcRDBD. This is particularly manifested in the heterocomplexes formed between the EcRDBD mutants and the wild-type Usp DNA-binding domain (UspDBD). Circular dichroism (CD) spectra and protein unfolding experiments indicate that, in contrast to the UspDBD, the EcRDBD is characterized by a lower alpha-helix content and a lower stability. As such, the EcRDBD appears to be an intrinsically unstructured protein-like molecule with a high degree of intramolecular plasticity. Because recently published crystal structures indicate that the ligand binding domain of the EcR is also characterized by the extreme adaptability, we suggest that plasticity of the EcR domains may be a key factor that allows a single EcR molecule to mediate diverse biological effects.  相似文献   

10.
11.
The transactivation of nuclear receptors is regulated by both ligand binding and phosphorylation. We previously showed that RARalpha (retinoic acid receptor alpha) phosphorylation by c-Jun N-terminal kinase contributes to retinoid resistance in a subset of NSCLC cells (non-small cell lung cancer cells), but the aetiology of this resistance in the remainder has not been fully elucidated [Srinivas, Juroske, Kalyankrishna, Cody, Price, Xu, Narayanan, Weigel and Kurie (2005) Mol. Cell. Biol. 25, 1054-1069]. In the present study, we report that Akt, which is constitutively activated in NSCLC cells, phosphorylates RARalpha and inhibits its transactivation. Biochemical and functional analyses showed that Akt interacts with RARalpha and phosphorylates the Ser96 residue of its DNA-binding domain. Mutation of Ser96 to alanine abrogated the suppressive effect of Akt. Overexpression of a dominant-negative form of Akt in an NSCLC cell line decreased RAR phosphorylation, increased RAR transactivation and enhanced the growth-inhibitory effects of an RAR ligand. The findings presented here show that Akt inhibits RAR transactivation and contributes to retinoid resistance in a subset of NSCLC cells.  相似文献   

12.
Estrogen receptor alpha (ER) is a member of the nuclear hormone receptor family, which upon binding estrogen shows increased apparent affinity for nuclear components (tight nuclear binding). The nuclear components that mediate this tight nuclear binding have been proposed to include both ER-DNA interactions and ER-protein interactions. In this paper, we demonstrate that tight nuclear binding of ER upon estrogen occupation requires ER-DNA interactions. Hormone-bound ER can be extracted from the nucleus in low-salt buffer using various polyanions, which mimic the phosphate backbone of DNA. The importance of specific ER-DNA interactions in mediating tight nuclear binding is also supported by the 380-fold lower concentration of the ERE oligonucleotide necessary to extract estrogen-occupied ER from the nucleus compared to the polyanions. We also demonstrate that estrogen-induced tight nuclear binding requires both the nuclear localization domain and the DNA binding domain of ER. Finally, enzymatic degradation of nuclear DNA allows us to recover 45% of tight nuclear-bound ER. We further demonstrate that ER-AIB1 interaction is not required for estrogen-induced tight nuclear binding. Taken together, we propose a model in which tight nuclear binding of the estrogen-occupied ER is predominantly mediated by ER-DNA interactions. The effects of estrogen binding on altering DNA binding in whole cells are proposed to occur through estrogen-induced changes in ER-chaperone protein interactions, which alter the DNA accessibility of ER but do not directly change the affinity of the ER for DNA, which is similar for both unoccupied and occupied ER.  相似文献   

13.
We have studied the interaction of the DNA-binding domain of the glucocorticoid receptor with a glucocorticoid response element from the tyrosine aminotransferase gene. This response element consists of two binding sites (half-sites) for the glucocorticoid receptor DNA-binding domain. The sequences of these two half-sites are not identical, and we have previously shown that binding occurs preferentially to one of the half-sites (Tsai, S.-Y., Carlstedt-Duke, J., Weigel, N. L., Dahlman, K., Gustafsson, J.-A., Tsai, M.-J., and O'Malley, B. W. (1988) Cell 55, 361-369). We show here that binding to the low affinity half-site is dependent on previous occupancy of the high affinity half-site. This facilitated binding is dependent on the distance between the two half-sites and their relative orientation but is not dependent on the integrity of the DNA backbone. This is consistent with a model where DNA binding is not only dependent on interactions between the protein and its DNA target sequence but is also influenced by interactions between the protein molecules bound.  相似文献   

14.
15.
16.
Expression and role of retinoic acid receptor alpha in lens regeneration   总被引:1,自引:0,他引:1  
The role of retinoids in eye development has been well studied. Retinoids and their receptors regulate gene expression and morphogenesis of the eye. In this study, a highly specific antagonist of retinoic acid receptor (RAR)-alpha was used in an attempt to study its function in lens regeneration. It was found that this antagonist inhibited lens regeneration and lens fiber differentiation. It was also shown that RAR-alpha is expressed in the lens during the process of regeneration. These results indicate that different RAR might have unique as well as redundant effects and patterns of expression in the regenerating lens.  相似文献   

17.
The binding of nonspecific DNA to the C-terminal negative regulatory domain (CTD) of p53 modulates its activity. The CTD is a natively unfolded region, which is subject to acetylation and phosphorylation at several residues as part of control. To measure the effect of covalent modification on binding to DNA, we synthesized a series of fluorescein-labeled CTD peptides with single and multiple acetylations at lysine residues that we had identified by NMR as making contact with DNA, and developed an analytical ultracentrifugation method to study their binding to DNA. Binding depended on ionic strength, indicating an electrostatic contribution. Monoacetylation weakened DNA binding at physiological ionic strength 2- to 3-fold, diacetylations resulted in further 2- to 3-fold decrease in the affinity, and tri- and tetraacetylations rendered DNA binding undetectable. Phosphorylation at S392 did not affect DNA binding. NMR spectroscopy showed binding to DNA did not induce significant structure into CTD, apart possibly from local helix formation.  相似文献   

18.
SET domain protein methyltransferases catalyze the transfer of methyl groups from the cofactor S-adenosylmethionine (AdoMet) to specific lysine residues of protein substrates, such as the N-terminal tails of histones H3 and H4 and the large subunit of the Rubisco holoenzyme complex. The crystal structures of pea Rubisco large subunit methyltransferase (LSMT) in ternary complexes with either lysine or epsilon-N-methyllysine (MeLys) and the product S-adenosylhomocysteine (AdoHcy) were determined to resolutions of 2.65 and 2.55 A, respectively. The zeta-methyl group of MeLys is bound to the enzyme via carbon-oxygen hydrogen bonds that play a key role in catalysis. The methyl donor and acceptor are aligned in a linear geometry for S(N)2 nucleophilic transfer of the methyl group during catalysis. Differences in hydrogen bonding between the MeLys epsilon-amino group and Rubisco LSMT and SET7/9 explain why Rubisco LSMT generates multiply methylated Lys, wheras SET7/9 generates only MeLys.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号