首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The removal of volatile organic compounds (VOC) in biofilters packed with organic filter beds, such as peat moss (PM) and pine sawdust (PS), frequently presents drawbacks associated to the collapse of internal structures affecting the long-term operation. Poly(ethylene ether carbonate) (PEEC) groups grafted to these organic carriers cross linked with 4,4'-methylenebis(phenylisocyanate) (MDI) permitted fiber aggregation into specific shapes and with excellent hexane sorption performance. Modified peat moss (IPM) showed very favorable characteristics for rapid microbial development. Water-holding capacity in addition to hexane adsorption almost equal to the dry samples was obtained. Pilot scale hexane biofiltration experiments were performed with the composites after inoculation with the filamentous fungus Fusarium solani. During the operation of the biofilter under non-aseptic conditions, the addition of bacterial antibiotics did not have a relevant effect on hexane removal, confirming the role of fungi in the uptake of hexane and that bacterial growth was intrinsically limited by an adequate performance of the composites. IPM biofilter had a start-up period of 8-13 days with concurrent CO(2) production of approximately 90 g m(-3) h(-1) at day 11. The final pressure drop after 70 days of operation was 5.3 mmH(2)O m(-1) reactor. For modified pine sawdust (IPS) packed biofilter, 5 days were required to develop an EC of about 100 g m(-3) h(-1) with an inlet hexane load of approximately 190 g m(-3) h(-1). Under similar conditions, 12-17 days were required to observe a significant start-up in the reference perlite biofilter to reach gradually an EC of approximately 100 g m(-3) h(-1) at day 32. Under typical biofiltration conditions, the physical-chemical properties of the modified supports maintained a minimum water activity (a(w)) of 0.925 and a pH between 4 and 5.5, which allowed the preferential fungal development and limited bacterial growth.  相似文献   

2.
Fungal biofilters have been recently studied as an alternative to the bacterial systems for the elimination of hydrophobic volatile organic compounds (VOC). Fungi foster reduced transport limitation of hydrophobic VOCs due to their hydrophobic surface and extended gas exchange area associated to the hyphal growth. Nevertheless, one of their principal drawbacks is their slow growth, which is critical in the start‐up of fungal biofilters. This work compares the use of different carbon sources (glycerol, 1‐hexanol, wheat bran, and n‐hexane) to reduce the start‐up period and sustain high n‐hexane elimination capacities (EC) in biofilters inoculated with Fusarium solani. Four parallel experiments were performed with the different media and the EC, the n‐hexane partition coefficient, the biomass production and the specific consumption rate were evaluated. Biofilters were operated with a residence time of 1.3 min and an inlet n‐hexane load of 325 g m−3reactor h−1. The time to attain maximum EC once gaseous n‐hexane was fed was reduced in the three experiments with alternate substrates, as compared to the 36 days needed with the control where only n‐hexane was added. The shortest adaptation period was 7 days when wheat bran was initially used obtaining a maximum EC of 160 g m−3reactor h−1 and a critical load of 55 g m−3reactor h−1. The results were also consistent with the pressure drop, the amount of biomass produced and its affinity for the gaseous n‐hexane, as represented by its partition coefficient. Biotechnol. Bioeng. 2011; 108:758–765. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Toluene removal from waste air using a flat composite membrane bioreactor   总被引:1,自引:0,他引:1  
In this report, gaseous toluene biodegradation results in a flat composite membrane reactor inoculated with Pseudomonas putida TVA8 are presented. Preliminary abiotic experiments showed that transport of toluene through the membrane was linearly and negatively correlated with the gas residence time (tau). During a 339-day biofiltration experiment, the influence of gas residence time (2-24 sec) and mass loading rate (B(v); 10-483 g x m(-3) h(-1)) on the toluene elimination capacity was investigated. A maximum elimination capacity (EC(max)) of 397 g x m(-3) h(-1) was achieved at tau = 24 sec and B(v) = 473 g x m(-3) h(-1). Expressed per unit membrane area, the EC(m,max) was 0.793 g x m(-2) h(-1), which is five times higher than results obtained with other membrane bioreactor experiments in the same range of loading rates. At low gas residence times, reactor performance was limited by mass transfer. Toluene concentration profiles along the membrane were measured for several biotic and abiotic conditions. For inlet concentrations (C(in)) up to 1 g x m(-3), more than 90% was eliminated at 15 cm from the reactor inlet. For C(in) > 1.65 g x m(-3), longer membranes are necessary to obtain these high removal efficiencies.  相似文献   

4.
The kinetics of biodegradation of TCE in the biofilter packed with wood charcoal and inoculated with diazotrophic bacterial community had been investigated. Use of Michaelis-Menten type model showed that substrate inhibition was present in the system. The kinetic model proposed by Edwards (1970) was used to calculate kinetic parameters-maximum elimination capacity (EC(max)), substrate constant (K(s)), and inhibition constant (K(I)). The model fitted well with the experimental data and the EC(max) was found to be in the range of 10.8-6.1 g/m(3) h. The K(s) values depended upon substrate concentration and ranged from 0.024 to 0.043 g/m(3) indicating the high affinity of diazotrophs for TCE. The K(I) values were low and nearly constant (0.011-0.015 g/m(3)) indicating a moderate substrate inhibition.  相似文献   

5.
Toluene biofiltration by the fungus Scedosporium apiospermum TB1   总被引:5,自引:0,他引:5  
The performance of biofilters inoculated with the fungus Scedosporium apiospermum was evaluated. This fungus was isolated from a biofilter which operated with toluene for more than 6 months. The experiments were performed in a 2.9 L reactor packed with vermiculite or with vermiculite-granular activated carbon as packing material. The initial moisture content of the support and the inlet concentration of toluene were 70% and 6 g/m3, respectively. As the pressure drop increased from 5-40 mm H2O a strong initial growth was observed. Stable operation was maintained for 20 days with a moisture content of 55% and a biomass of 33 mg biomass/g dry support. These conditions were achieved with intermittent addition of culture medium, which permitted a stable elimination capacity (EC) of 100 g/m3(reactor)h without clogging. Pressure drop across the bed and CO2 production were related to toluene elimination. Measurement of toluene, at different levels of the biofilter, showed that the system attained higher local EC (200 g/m3(r)h) at the reactor outlet. These conditions were related to local humidity conditions. When the mineral medium was added periodically before the EC decreases, EC of approximately 258 g/m3(r)h were maintained with removal efficiencies of 98%. Under these conditions the average moisture content was 60% and 41 mg biomass/g dry support was produced. No sporulation was observed. Evaluation of bacterial content and activities showed that the toluene elimination was only due to S. apiospermum catabolism.  相似文献   

6.
We explored the use of a newly developed cuvette-based surface plasmon resonance (SPR) instrument (IBIS) to study peptide-protein interactions. We studied the interaction between the SH2 domain of lck and a phosphotyrosine peptide EPQY*EEIPIYL which was immobilized on a sensor chip. No indications for mass transport limitation (MTL) were observed when standard kinetic approaches were used. However, addition of competing peptide during dissociation revealed a high extent of rebinding. A dissociation rate constant (k(d)) of 0.6+/-0.1 s(-1) was obtained in the presence of large amounts of peptide. A simple bimolecular binding model, applying second-order kinetics for the cuvette system, could not adequately describe the data. Fits were improved upon including a step in the model which describes diffusion of the SH2 domain from the bulk to the sensor, especially for a surface with high binding capacity. From experiments in glycerol-containing buffers, it appeared that the diffusion rate decreased with higher viscosity. It is demonstrated that MTL during association and dissociation can be described by the same diffusion rate. A binding constant (K(D)) of 5.9+/-0.8 nM was obtained from the SPR equilibrium signals by fitting to a Langmuir binding isotherm, with correction for loss of free analyte due to binding. An association rate constant k(a) of 1.1(+/-0.2)x10(8) M(-1) x s(-1) was obtained from k(d)/K(D). The values for k(a) and k(d) obtained in this way were 2-3 orders larger than that from standard kinetic analysis, ignoring MTL. We conclude that in a cuvette the extent of MTL is comparable to that in a flow system.  相似文献   

7.
The applicability of dolomite particlesto control acidificationin a Hyphomicrobium MS3inoculated biofilter removingdimethyl sulphide (Me2S) wasstudied. While direct inoculationof the dolomite particles with theliquid microbial culture was notsuccessful, start-up ofMe2S-degradation in thebiofilter was observed when thedolomite particles were mixed with33% (wt/wt) of Hyphomicrobium MS3-inoculatedcompost or wood bark material.Under optimal conditions, anelimination capacity (EC) of 1680~g Me2S m-3 d-1 wasobtained for the compost/dolomitebiofilter. Contrary to a wood barkor compost biofilter, no reductionin activity due to acidificationwas observed in these biofiltersover a 235 day period because ofthe micro environmentneutralisation of the microbialmetabolite H2SO4 with thecarbonate in the dolomite material.However, performance of thebiofilter decreased when themoisture content of the mixedcompost/dolomite material droppedbelow 15%. Next to this, nutrientlimitation resulted in a gradualdecrease of the EC andsupplementation of a nitrogensource was a prerequisite to obtaina long-term high EC (> 250 gMe2S m-3 d-1) forMe2S. In relation to thisnitrogen supplementation, it wasobserved that stable ECs forMe2S were obtained when thisnutrient was dosed to the biofilterat a Me2S-C/NH4Cl-Nratio of about 10.Abbreviations:DW – dry weight,EC – elimination capacity,Me2S – dimethyl sulphide,OL – organic loading rate,VS - volatile solids  相似文献   

8.
During some previous works, a packed-bed lab-scale biofilter (177 . 10(-6) m3), inoculated with a selected strain of Aspergillus niger had been tested for the abatement of hexane vapors, showing a maximum elimination capacity of 200 g hexane/m3 reactor/h. A steady-state mathematical model taking into account axial dispersion effect was applied to describe the process and predict experimental results, but many model parameters could not be calculated from experimental data. The aim of the present work was to carry out further investigations to accurately determine the dispersion coefficient and the kinetics parameters to verify the effective validity of the model. Analysis of residential time distribution revealed the presence of a certain degree of axial dispersion (dispersion coefficient D of 1.22 . 10(-4) m2/s). Experimental data from kinetic trials carried out in reduced height reactors, together with data from full-scale runs, were elaborated to estimate the kinetic saturation constant (K(s)), the coefficient yield (Y), the maximum growth rate (mu(max)) and maximum substrate degradation rate (r(max)). All these parameters were introduced into the model, which was then solved by simulation software finding a good correlation between experimental and theoretical results.  相似文献   

9.
The kinetics of glyoxalase I [(R)-S-lactoylglutathione methylglyoxal-lyase; EC 4.4.1.5] and glyoxalase II (S-2-hydroxyacylglutathione hydrolase; EC 3.1.2.6) from Saccharomyces cerevisiae was studied in situ, in digitonin permeabilized cells, using two different approaches: initial rate analysis and progress curves analysis. Initial rate analysis was performed by hyperbolic regression of initial rates using the program HYPERFIT. Glyoxalase I exhibited saturation kinetics on 0.05-2.5 mM hemithioacetal concentration range, with kinetic parameters Km 0.53 +/- 0.07 mM and V (3.18 +/- 0.16) x 10(-2) mM.min(-1). Glyoxalase II also showed saturation kinetics in the SD-lactoylglutathione concentration range of 0.15-3 mM and Km 0.32 +/- 0.13 mM and V (1.03 +/- 0.10) x 10(-3) mM.min(-1) were obtained. The kinetic parameters of both enzymes were also estimated by nonlinear regression of progress curves using the raw absorbance data and integrated differential rate equations with the program GEPASI. Several optimization methods were used to minimize the sum of squares of residuals. The best parameter fit for the glyoxalase I reaction was obtained with a single curve analysis, using the irreversible Michaelis-Menten model. The kinetic parameters obtained, Km 0.62 +/- 0.18 mM and V (2.86 +/- 0.01) x 10(-2) mM.min(-1), were in agreement with those obtained by initial rate analysis. The results obtained for glyoxalase II, using either the irreversible Michaelis-Menten model or a phenomenological reversible hyperbolic model, showed a high correlation of residuals with time and/or high values of standard deviation associated with Km. The possible causes for the discrepancy between data obtained from initial rate analysis and progress curve analysis, for glyoxalase II, are discussed.  相似文献   

10.
The dispersion and capture of differently shaped particles within a Zostera marina L. (eelgrass; Zosteraceae) bed were examined to understand submarine pollination and other dispersals. During periods of moderate flow in the canopy, the capture rate of "spherical" (the shape of ancestral pollen) and "filamentous" (the shape of eelgrass pollen) particles was greater for particles released at the top of the canopy (3.07 and 4.53% × 10(-5) cm(-2) of collector; i.e., percentage of particles captured normalized to collector area) and greater for filamentous than for spherical particles (4.51% × 10(-5) cm(-2) vs. 2.01% × 10(-5) cm(-2)). Estimates of the horizontal P (Joseph-Sendner diffusion velocity) and the vertical diffusivity (Gaussian K) of filamentous particles were small (P ≈ 4 × 10(-4) m/s; K ≈ 10(-4) m(2)/s) compared to theoretical values that do not consider plant canopies. These findings support the concept that eelgrass canopies modify the fluid dynamics (i.e., reduced turbulent mixing) within their canopies. These results indicate that 1000-10?000 Z. marina pollen are required to pollinate a single flower. Similarly, it was estimated that under some conditions, the probability of particle impaction on eelgrass vegetation approaches certainty. These results provide insight into the evolution of filamentous pollen and submarine pollination, as well as dispersal and other mass transport phenomena within macrophyte canopies.  相似文献   

11.
Rhinocladiella similis biodegraded volatile organic compounds (VOCs) of different polarity in gas-phase biofilters. Elimination capacities, (EC) of 74 ghexane m−3 h−1, 230 gethanol m−3 h−1, 85 gtoluene m−3 h−1 and 30 gphenol m−3 h−1 were obtained. EC values correlated with the solubility of the VOCs. R. similis grown with n-hexane or ethanol in biofilters packed with Perlite showed that the surface hydrophobicity was higher with n-hexane than ethanol. The hydrophobin-like proteins extracted from the mycelium produced with n-hexane (15 kDa) were different from those in the ethanol biofilter (8.5 kDa and 7 kDa).  相似文献   

12.
The uptake of L-4-azaleucine was examined in Escherichia coli K-12 strains to determine the systems that serve for its accumulation. L-4=Azaleucine in radio-labeled form was synthesized and resolved by the action of hog kidney N-acylamino-acid amidohydrolase (EC 3.5.1.B) on the racemic alpha-N-acetyl derivative of DL-[dimethyl-14C]4-azaleucine. L-4-Azaleucine is taken up in E. coli by energy-dependent processes that are sensitive to changes in the pH and to inhibition by leucine and the aromatic amino acids. Although a single set of kinetic parameters was obtained by kinetic experiments, other evidence indicates that transport systems for both the aromatic and the branched-chain amino acids serve for azaleucine. Azaleucine uptake in strain EO317, with a mutation leading to derepression and constitutive expression of branched-chain amino acid (LIV) transport and binding proteins, was not repressed by growth with leucine as it was in parental strain EO300. Lesions in the aromatic amino acid transport system, aroP, also led to changes in the regulation of azaleucine uptake activity when cells were grown on phenylalanine. Experiments on the specificity of azaleucine uptake and exchange experiments with leucine and phenylalanine support the hypothesis that both LIV and aroP systems transport azaleucine. The ability of external azaleucine to exchange rapidly with intracellular leucine may be an important contributor to azaleucine toxicity. We conclude from these and other studies that at least four other process may affect azaleucine sensitivity: the level of branched-chain amino acid biosynthetic enzymes; the level of leucine, isoleucine, and valine transport systems; the level of the aromatic amino acid, aroP, uptake system; and, possibly, the ability of the cell to racemize D and L amino acids. The relative importance of these processes in azaleucine sensitivity under various conditions is not known precisely.  相似文献   

13.
A mixed culture derived from soil and activated sludge organisms was used to degrade phenol which was inhibitory to microorganisms at higher concentrations. The purpose of the experiments was to determine the kinetic parameters governing growth of the organisms by measuring growth rates in batch culture. To maintain a constant inoculum for the experiments inoculum was taken from a continuously operating continuous culture. Two populations were studied corresponding to two separate residence times in the continuous culture apparatus. One contained predominantly filamentous organisms, the other nonfilamentous. Five kinetic models were applied to the data and the best kinetic parameters for each model were determined by nonlinear least squares techniques. The models were then evaluated for best relative fit to the data. No significant differences were found between the models on the basis of fit and so a choice was made on the grounds of simplicity. A model proposed by Haldane was chosen as the best. No function however gave a satisfactory fit at the highest growth rates obtained. This experimental maximum in the plot of growth rate against substrate concentration was very sharp.  相似文献   

14.
Both short-term and long-term biofiltration experiments were undertaken with a biofilter inoculated with a defined microbial consortium and treating an alkylbenzene mixture. The results obtained with such a biofilter in short-term experiments were very similar to those obtained with a biofilter inoculated with a non-defined mixed culture, in terms of maximum elimination capacities (70-72 g m(-3) h(-1)) and the corresponding removal efficiencies (>95%). However, in long-term experiments, a better performance was reached, with a maximum elimination capacity of 120 g m(-3) h(-1), corresponding to a removal efficiency >99% after 2 years of operation. Inoculation proved to be useful for shortening the start-up period. In the long term, it appeared that biomass distribution was not homogenous along the biofilter, which in some cases resulted in a bad fit between simple model equations and experimental data.  相似文献   

15.
The transport of neutral amino acids in marine pseudomonad B-16 (ATCC 19855) has been investigated. From patterns of competitive inhibition, mutant analysis, and kinetic data, two active transport systems with overlapping substrate specificities were distinguished and characterized. One system (DAG) served glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid (AIB) and, to a lesser extent, L-alanine and possibly other related neutral D- and L-amino acids. The other system (LIV) showed high stereospecificity for neutral amino acids with the L configuration and served primarily to transport L-leucine, L-isoleucine, L-valine, and L-alanine. This system exhibited low affinity for alpha-aminoisobutyric acid. Neither system was able to recognize structural analogues with modified alpha-amino or alpha-carboxyl groups. The kinetic parameters for L-alanine transport by the DAG and LIV systems were determined with appropriate mutants defective in either system. For L-alanine, Kt values of 4.6 X 10(-5) and 1.9 X 10(-4) M and Vmax values of 6.9 and 20.8 nmol/min per mg of cell dry weight were obtained for transport via the DAG and LIV systems respectively. alpha-Aminoisobutyric acid transport heterogeneity was also resolved with the mutants, and Kt values of 2.8 X 10(-5) and 1.4 X 10(-3) M AIB were obtained for transport via the DAG and LIV systems, respectively. Both systems required Na+ for activity (0.3 M Na+ optimal) and in this regard are distinguished from systems of similar substrate specificity reported in nonmarine bacteria.  相似文献   

16.
17.
Methanol vapours were treated in a biotrickling filter (BTF) packed with inert polypropylene spheres. The effects of the nitrogen concentration in the nutrient solution, the empty bed residence time (EBRT) and the methanol inlet concentration, on the BTF performance, were all examined. The elimination capacity (EC), the biomass and the carbon dioxide production rates were all increased with the rising of the nitrogen concentration and the EBRT. The EC also rose with increasing methanol inlet load (IL) when the methanol inlet concentration and the EBRT were varied, from 0.3 to 37.0 g m(-3), and from 20 to 65 s, respectively. The BTF reached its maximum EC level of 2160 g m(-3) h(-1) when it was operated at an IL level of 3700 g m(-3) h(-1). The input methanol was removed through two mechanisms: biodegradation and absorption in the liquid phase. The partition coefficient for the methanol in the BTF was determined at five EBRTs and along the packed bed. It generally followed the Henry model, having an average value of 2.64 x 10(-4)[mol L(-1)](gas)/[mol L(-1)](liquid).  相似文献   

18.
Phenol biodegradation in a batch reactor using a pure culture of Pseudomonas putida DSM 548 was studied. The purpose of the experiments was to determine the kinetics of biodegradation by measuring biomass growth rates and phenol concentration as a function of time in a batch reactor. The Haldane equation μ=μ(m)S/((K(s)+S+S(2))/K(i)) adequately describes cell growth with kinetic constants μ(m)=0.436h(-1), K(s)=6.19mgl(-1), K(i)=54.1mgl(-1). These values are in the range of those published in literature for pure or mixed cultures degrading phenol.  相似文献   

19.
The purpose of this study is to investigate the feasibility of biologically removing phenol from waste gases by means of a biofilter using a Pseudomonas putida strain. Two series of both batch and continuous tests have been performed in order to ascertain the microbial degradation of phenol. For the preliminary batch tests, carried out in order to test the effective feasibility of the process and to investigate their kinetic behavior, two different microbial cultures belonging to the Pseudomonas genus have been employed, a heterogeneous culture and a pure strain of P. putida. The results of these comparative investigation showed that the pure culture is more efficient than the mixed one, even when the latter has undergone three successive acclimatization tests. The continuous experiments have been conducted during a period of about 1 year in a laboratory-scale column, packed with a mixture of peat and glass beads, and utilizing the pure culture of P. putida as microflora and varying the inlet phenol concentration from 50 up to 2000 mg m(-3). The results obtained show that high degrees of conversion can be obtained (0.93/0.996) operating at a residence time of 54 s. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
We previously presented a model from which the kinetic parameters Km and Vmax for serotonin uptake by the lung can be obtained from multiple indicator-dilution data. The purpose of the present study was to determine whether experimentally induced changes in lung endothelial function would be revealed in the kinetic parameters calculated using the model. In experiments using isolated dog lung lobes, embolization with 550-microns glass beads was used to reduce the vascular volume and perfused surface area. Imipramine was used to inhibit the serotonin uptake mechanism. In addition, we studied the influence of the vasodilator papaverine, which in previous studies had been used to block the serotonin-induced vasoconstriction. Embolization, imipramine, and papaverine all significantly reduced percentage uptake of serotonin. The kinetic analysis revealed a significant decrease in the maximum serotonin uptake rate (Vmax) with all three experimental manipulations. In addition, imipramine significantly increased Km. The results indicate that the kinetic parameters obtained from the model do respond to transport inhibition and changes in endothelial surface area, further supporting their usefulness as indexes of endothelial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号