首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mussel adhesive proteins (MAPs) have been considered as potential underwater and medical bioadhesives. Previously, we reported a functional expression of recombinant MAP hybrid fp-151, which is a fusion protein with six type 1 (fp-1) decapeptide repeats at each type 5 (fp-5) terminus, with practical properties in Escherichia coli. In the present work, we introduced the Vitreoscilla hemoglobin (VHb) co-expression strategy to enhance the production levels of hybrid fp-151 since VHb has been successfully used for efficient oxygen utilization in several expression systems, including E. coli. In both batch-type flask and fed-batch-type bioreactor cultures, we found that co-expression of VHb conferred higher cell growth and hybrid fp-151 production. Its positive effects were significantly increased in high cell density bioreactor cultures as the microaerobic environment was more quickly and severely formed. We obtained a approximately 1.9-fold higher (approximately 1 g/L) production of MAP fp-151 from VHb co-expressing cells in fed-batch bioreactor cultures as compared to that from VHb non-expressing cells. Collectively and regardless of the culture type, VHb co-expression strategy was successful in enhancing the production of recombinant mussel adhesive proteins in the E. coli expression system.  相似文献   

2.
Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ~1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material.  相似文献   

3.
4.
Mussel adhesive proteins, including the 20-plus variants of foot protein type 3 (fp-3), have been suggested as potential environmentally friendly adhesives for use in aqueous conditions and in medicine. Here we report the novel production of a recombinant Mytilus galloprovincialis foot protein type 3 variant A (Mgfp-3A) fused with a hexahistidine affinity ligand in Escherichia coli and its approximately 99% purification with affinity chromatography. Recombinant Mgfp-3A showed a superior purification yield and better apparent solubility in 5% acetic acid (prerequisites for large-scale production and practical use) compared to those of the previously reported recombinant M. galloprovincialis foot protein type 5 (Mgfp-5). The adsorption abilities and adhesion forces of purified recombinant Mgfp-3A were compared with those of Cell-Tak (a commercial mussel extract adhesive) and recombinant Mgfp-5 using quartz crystal microbalance analysis and modified atomic force microscopy, respectively. These assays showed that the adhesive ability of recombinant Mgfp-3A was comparable to that of Cell-Tak but lower than that of recombinant Mgfp-5. Collectively, these results indicate that recombinant Mgfp-3A may be useful as a commercial bioadhesive or an adhesive ingredient in medical or underwater environments.  相似文献   

5.
The effective delivery of exogenous genes into eukaryotic cells is important for fundamental and biotechnological research. Protein-based gene delivery including histone proteins has recently emerged as a powerful technique for non-viral DNA transfer. Histones are DNA-binding proteins that function in DNA packaging and protection. In particular, histone H1 is largely responsible for the stabilization of higher-order chromatin structures. Several studies have examined the use of full-length histone H1-mediated gene transfer, and a few studies have investigated the use of C-terminal histone H1 fragments as gene-transfer materials. Previously, we cloned a novel histone H1 cDNA from the goldfish Carassius auratus and found that a recombinant histone H1 C-terminal short peptide (H1C) of 61 amino acids has comparable DNA binding and protection functions as full-length histone H1. In the present work, we successfully expressed and purified soluble recombinant H1C in an Escherichia coli expression system using a hexahistidine tag fusion strategy and providing tRNAs for rare codons. We confirmed its DNA-binding ability and found that this H1C peptide had similar or higher transfection efficiency in mammalian cells (human 293T and mouse NIH/3T3) than the widely used agent lipofectamine. Therefore, we suggest that this novel goldfish-derived recombinant histone H1 C-terminal short peptide could be used as a peptide-based gene-transfer mediator.  相似文献   

6.
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.  相似文献   

7.
Basic peptide system for efficient delivery of foreign genes   总被引:3,自引:0,他引:3  
Certain peptides containing high percentage of cationic amino acids are known to efficiently translocate through the cell membrane. This principle was previously exploited for delivery of variety proteins. We had observed that various basic peptides of earlier studies, though not specifically use for gene delivery, contain DNA or RNA binding domains. In the present study, we reported on arginine peptides, which form DNA complexes that efficiently transfect various cell lines. The transfection abilities of the peptides were observed by green fluorescent protein (GFP) and beta-galactosidase gene expression in 293T, HeLa, Jurkat, and COS-7 cells. We found superior transfection activity of arginine peptides compared with commercially available efficient transfection agents. The expression of marker genes induced by arginine peptides was partially inhibited in the presence of heparan sulfate, chondroitin sulfate B and C, or both heparinase III and chondroitinase ABC. The transfection proficiency of these peptides was affected by endosomotropic reagent as well as low temperature (4 degrees C). Finally, we have investigated the potential of arginine peptides as a delivery agent for gene therapy, by attempting to deliver herpes simplex virus thymidine kinase (HSV-TK) gene into tumor cells. HSV-TK transfected tumor cells exhibited sensitivity to the antiviral drug ganciclovir (GCV), leading to cell death. Taken together, these data demonstrate that arginine peptide is proficient for transfection, indicating its potentially benefit to studies in gene therapy and gene delivery in a range of model organisms.  相似文献   

8.
A recombinant, multifunctional protein has been designed for optimized, cell-targeted DNA delivery and gene expression in mammalian cells. This hybrid construct comprises a viral peptide ligand for integrin alpha(V)beta(3) binding, a DNA-condensing poly-L-lysine domain, and a complete, functional beta-galactosidase protein that serves simultaneously as purification tag and DNA-shielding agent. This recombinant protein is stable; it has been produced successfully in Escherichia coli and can be purified in a single step by affinity chromatography. At optimal molar ratios, mixtures of this vector and a luciferase-reporter plasmid form stable complexes that transfect cultured cells. After exposure to these cell-targeted complexes, steady levels of gene expression are observed for more than 3 days after transfection, representing between 20 and 40% of those achieved with untargeted, lipid-based DNA-condensing agents. The principle to include viral motifs for cell infection in single polypeptide recombinant proteins represents a promising approach towards the design of non-viral modular DNA transfer vectors that conserve the cell-target- ing specificity of native viruses and that do not need further processing after bioproduction in a recombinant host.  相似文献   

9.
Sloots A  Wels WS 《The FEBS journal》2005,272(16):4221-4236
Certain natural peptides and proteins of mammalian origin are able to bind and condense plasmid DNA, a prerequisite for the formation of transfection-competent complexes that facilitate nonviral gene delivery. Here we have generated recombinant derivatives of the human high-mobility group (HMG) protein HMGB2 and investigated their potential as novel protein-based transfection reagents. A truncated form of HMGB2 encompassing amino acids 1-186 of the molecule was expressed in Escherichia coli at high yield. This HMGB2186 protein purified from bacterial lysates was able to condense plasmid DNA in a concentration-dependent manner, and mediated gene delivery into different established tumor cell lines more efficiently than poly(l-lysine). By attaching, via gene fusion, additional functional domains such as the HIV-1 TAT protein transduction domain (TAT(PTD)-HMGB2186), the nuclear localization sequence of the simian virus 40 (SV40) large T-antigen (SV40(NLS)-HMGB2186), or the importin-beta-binding domain (IBB) of human importin-alpha (IBB-HMGB2186), chimeric fusion proteins were produced which displayed markedly improved transfection efficiency. Addition of chloroquine strongly enhanced gene transfer by all four HMGB2186 derivatives studied, indicating cellular uptake of protein-DNA complexes via endocytosis. The IBB-HMGB2186 molecule in the presence of the endosomolytic reagent was the most effective. Our results show that recombinant derivatives of human HMGB2 facilitate efficient nonviral gene delivery and may become useful reagents for applications in gene therapy.  相似文献   

10.

Background  

Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells.  相似文献   

11.
Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationiccharge potential.High transfection efficiency of PEI,along with its cytotoxicity,strongly depends on itsmolecular weight.To enhance its gene delivery efficiency and minimize cytotoxicity,we have synthesizedsmall cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro.Inthis study,branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate[1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h.The efficiencies of thecross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein(EGFP) reporter gene were assessed in melanoma B 16F10 cell line and other cell lines.Flow cytometrywas used to quantify the cellular entry efficiency of plasmid and the transgene expression level.Thecytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay.EGDMA-PEI 800-4h,atypical cross-linked PEI reported here,mediated a more efficient expression of reporter gene than thecommercially available 25-kDa branched PEI control,and resulted in a 9-fold increase in gene deliveryin B16F10 cells and a 16-fold increase in 293T cells,while no cytotoxicity was found at the optimizedcondition for gene delivery.Furthermore,the transfection activity of polyplexes was preserved in thepresence of serum proteins.  相似文献   

12.
The delivery of DNA to mammalian cells is of critical importance to the development of genetic vaccines, gene replacement therapies and gene silencing. For these applications, targeting, effective DNA transfer and vector safety are the major roadblocks in furthering development. In this report, we present a novel DNA delivery vehicle that makes use of protoplasted, achromosomal bacterial minicells. Transfer of plasmid DNA as measured by green fluorescent protein expression was found to occur in as high as 25% of cultured Cos-7 cells when a novel chimeric protein containing the D2-D5 region of invasin was expressed and displayed on the surface of protoplasted minicells. Based on endoplasmic reticulum stress and other responses, protoplasted minicells were non-toxic to recipient eukaryotic cells as a consequence of the transfection process. Taken together, these results suggest that bacterial minicells may represent a novel and promising gene delivery vehicle.  相似文献   

13.
Microporation is an efficient method for delivering plasmid DNA molecules into cultured cells. Herein, we present the optimization of gene delivery by microporation using a Central Composite Design methodology. It was given relevance not only to the transfection efficiency but also to the cell recovery. Different amounts of DNA (1 and 3 μg) mainly affected cell viabilities and cell recoveries, which decrease from 93 to 76% and from 47 to 25% respectively, when higher DNA quantity is used. With this work we suggest an easy methodology to improve transfection of mammalian cells underlining the feasibility to achieve 60% of gene delivery efficiencies whilst recovering 50% of cells, with 90% of viability.  相似文献   

14.
The HIV-1 Nef protein expressed early in viral life cycle has been known as a potent candidate for therapeutic vaccine development. Due to different cell barriers, various cell penetrating peptides (CPPs) such as Pep-1 and CADY-2 have been known to deliver biologically active proteins to cytoplasmic compartments via the plasma membrane. In current study, we firstly evaluated the efficiency of lentiviral vector (pCDH-CMV-MCS-EF1-cGFP-T2A-puro) and eukaryotic expression vector (pEGFP-N1) for expression of HIV-1 Nef protein in HEK-293T cells using TurboFect transfection reagent. Our results showed that both vectors can effectively express the Nef proteins within the target cell. The pEGFP-N1 was more effective than pCDH-GFP for protein expression. Furthermore, Nef protein was expressed in E. coli as GST-Nef fusion and transfected by the amphipathic CPPs including Pep-1 and CADY-2 into HEK-293T cells. The size and morphology of the GST-Nef/CPP complexes were evaluated by scanning electron microscopy, and Zetasizer. Our data indicated that the recombinant GST-Nef protein generated in BL21 strain migrated as a clear band of ~50 kDa in SDS-PAGE. The CPP/GST-Nef nanoparticles were formed with a diameter of below 200 nm and notably delivered into HEK-293T cells. Generally, the Nef protein was expressed in prokaryotic and eukaryotic expression systems using different vectors and efficiently transfected in mammalian cells using various delivery systems. The in vitro efficient delivery of HIV-1 Nef gene and also its protein supports the potential of Nef DNA constructs and CPPs as potent carriers of Nef protein for HIV vaccine design in Future.  相似文献   

15.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Mussel adhesive proteins (MAPs) have been suggested as promising bioadhesives for diverse application fields, including medical uses. Previously, we successfully constructed and produced a new type of functional recombinant MAP, fp-151, in a prokaryotic Escherichia coli expression system. Even though the E. coli-derived MAP showed several excellent features, such as high production yield and efficient purification, in vitro enzymatic modification is required to convert tyrosine residues to l-3,4-dihydroxyphenyl alanine (dopa) molecules for its adhesive ability, due to the intrinsic inability of E. coli to undergo post-translational modification. In this work, we produced a soluble recombinant MAP in insect Sf9 cells, which are widely used as an effective and convenient eukaryotic expression system for eukaryotic foreign proteins. Importantly, we found that insect-derived MAP contained converted dopa residues by in vivo post-translational modification. In addition, insect-derived MAP also had other post-translational modifications including phosphorylation of serine and hydroxylation of proline that originally occurred in some natural MAPs. To our knowledge, this is the first report on in vivo post-translational modifications of MAP containing dopa and other modified amino acid residues.  相似文献   

17.
18.
This work investigates the preparation and in vitro efficiency of chitosan gene transfection systems. Chitosan was used to prepare nanoparticles with a size range of 40-200 nm as determined using photon correlation spectroscopy (PCS) and 40-80 nm as determined using transmission electron microscopy (TEM). The ability of particles to complex DNA was investigated using gel retardation. Plasmid DNA pGL3-Control encoding firefly luciferase and pCH110 encoding beta-galactosidase were used as reporter genes. For transfection 293 human embryonal kidney cells and Chinese hamster ovary (CHO-K1) cells were used. The expression of luciferase was assayed and expressed as relative light units per milligram of protein (RLU/mg protein). Results showed that these chitosan particles have potential as vectors for the transfer of DNA into mammalian cells. Cellular transfection by the chitosan-pGL3-Control particles showed a sustained expression of the luciferase gene for about 10 days. Commercial transfection reagents, SuperFect and Lipofectin were also used. In contrast to chitosan particles, the duration of expression for both SuperFect and Lipofectin was only about 2 days. Agarose gel electrophoresis and displacement experiments using polyaspartic acid indicated a probable multiple interaction between DNA and chitosan whilst the interaction between DNA and the polyamidoamine dendrimer appears to be only ionic interaction. No toxic effect on the mammalian cells was seen with chitosan. SuperFect and Lipofectin however, were observed to engender marked cytotoxicity. Poly-D,L-lactide (PLA) nanoparticles (40-80 nm) and poly-L-lactide (PLLA) lamellae (2-6 microm) were also used to load DNA by an adsorption procedure, but these failed to give good expression data.  相似文献   

19.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

20.
海洋贻贝粘附蛋白类的结构与功能   总被引:3,自引:0,他引:3  
海洋贻贝粘附蛋白具有高强度、高韧性和防水性,以及极强的黏附基体的功能,这与其特殊的分子结构、多巴(DOPA)介导的链间交联和与底材之间的相互作用方式有关,并且,它还具有很好的生物相容性和可降解性,是一类极具优势和潜力的生物胶黏剂.本文主要就粘附蛋白分子的结构和功能、粘附蛋白的粘附机理以及有关粘附蛋白生物粘剂等问题对其进行综述  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号