首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

2.
Summary Current speed and direction measurements collected during summer (January–February) and sping (November–December) of 1984 indicated that currents in McMurdo Sound, Antarctica were dominated by oscillatory flow associated with diurnal tidal components (O1, K1, P1). Net flow was southward in the eastern Sound, mixed in the central Sound, and northward in the western Sound. Short term observations (<5 days) from nearshore stations indicated a similar but more sluggish pattern of tidal and mean flow. Hydrographic data collected during the same period indicated a similar pattern of cold water with low chlorophyll a content flowing northward from under the Ross Ice Shelf in the western Sound and denser, slightly warmer water with higher chlorophyll a content flowing southward in the eastern Sound. Previous studies have shown that productivity is higher in the eastern Sound than in the west, apparently due to the circulation pattern. The western Sound consists of waters from beneath the Ross Ice Shelf which have a lower phytoplankton standing stock than eastern Sound waters which enter from the north. More sluggish current speeds in the western Sound result in even lower particle fluxes past benthic consumers. Finally, more persistent ice cover in the west further inhibits in situ primary productivity.  相似文献   

3.
J. P. Barry 《Polar Biology》1988,8(5):377-391
Summary Measurements of hydrographic parameters (temperature, salinity, nitrate, nitrite, phosphate, chlorophyll a, phaeophytin, and oxygen) in McMurdo Sound, Antarctica during spring, 1984, before the regional phytoplankton bloom, and summer, 1984, after the peak of the bloom, indicate the several processes contribute to changes in the vertical and horizontal structure of the water column. Regional variation in the source of water masses within the Sound, ice cover patterns, and meltwater from the Ross Ice Shelf and nearby continental glaciers result in east-west and north-south gradients in the thermohaline, nutrient, and productivity characteristics of the Sound. These patterns are also related to the extremely variable structure and productivity of shallow water benthic macrofaunal communities in McMurdo Sound. Hydrographic patterns during Spring (November) were indicative of conditions at the end of winter prior to the spring phytoplankton bloom. The water column was nearly isothermal with temperatures near or below the surface freezing point of seawater with only a slight salinity increase with depth. Salinity was lower in the west Sound than in the east, probably in response to glacial meltwater input from the Ross Ice Shelf and/or terrestrial sources. Nutrient levels were high and nearly homogenous throughout the Sound. Chlorophyll a was low (<1.0 g/l) throughout most of the Sound, but was lowest in the western sound, as expected from the circulation pattern (Barry and Dayton 1988). Oxygen was uniformly low during spring. The summer hydrographic distributions, estimated from samples collected during the decline of the regional plankton bloom, were dramatically different than in during spring. Both the salinity and temperature were vertically stratified at all sites, particularly in the west Sound. Temperatures near the surface were well above the freezing point and occasionally near or above 0°C. Near surface salinity in the western Sound was nearly fresh (0.4 ppt) at some locations in the southwestern Sound. Chlorophyll a was high throughout the Sound relative to spring concentrations, and nutrient levels (NO3, PO4) were strongly depressed near the surface, due mainly to phytoplankton uptake rather than by dilution. Primary productivity estimates based on the summer nitrate and phosphate deficits over 90 days were 1.96–2.02 and 0.39–1.02 gCm-2d-1 for the east and west sound, respectively. Nutrient ratios indicated that glacial meltwater from the Ross Ice Shelf and/or nearby terrestrial sources may be an important component of the summer meltwater input to the western Sound. Enhanced water column stability due to this input may prolong the maintenance of high water column stability as this water mass flows northward and result in particularly high productivity in northern McMurdo Sound.  相似文献   

4.
A distinct vertical zonation was observed among diatoms in a bottom congelation ice community at McMurdo Sound, Antarctica during the 1981 spring bloom. The bottom 20 cm of ice collected in December from four stations with variable snow cover was subdivided into 5 cm sections for analysis of algal distribution. Algal abundance was inversely related to the depth of snow cover, and generally decreased with increasing distance above the ice-water interface. Most diatoms, including the dominant species Nitzschia stellata Manguin, Amphiprora kufferathii Manguin and Fragilaria islandica var. adeliae Manguin showed peak abundance in the bottom 10 cm of the ice, where the proportion of living to empty cells was also highest. Two species, however, an Auricula Castracane sp. and Navicula glaciei van Heurck, reached highest concentrations at depths 10–20 cm above the ice-water interface. We considered two factors as contributing to the observed vertical zonation: (1) successive blooms at the ice-water interface become spatially stratified within the ice by further accretion below; (2) a differential growth of species occurs along physicochemical gradients within the ice column. A comparison of early versus late season profiles suggests the latter mechanism may prevail once ice accretion has ceased.  相似文献   

5.
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.  相似文献   

6.
Sea ice microalgae in McMurdo Sound, Antarctica were examined for photosynthesis-irradiance relationships and for the extent and time course of their photoadaptation to a reduction in in situ irradiance. Algae were collected from the bottom centimeter of coarse-grained congelation ice in an area free of natural snow cover. Photosynthetic rate was determined in short term (1 h) incubations at ?2° C over a range of irradiance from 0 to 286 μE·m?2·s?1. Assimilation numbers were consistently below 0.1 mg C·mg chl a?1·h?1. The Ik's3 averaged only 7 μE·m?2·s?1, and photosynthesis was inhibited at irradiances above 25 μE·m?2·s?1. Photosynthetic parameters of the ice algal community were examined over a nine day period following the addition of 4 cm of surface snow while a control area remained snow-free. A reduction of 40% in PmB relative to the control occurred after two days of snow cover; α, β, Ik, and Im were not significantly altered. Low assimilation numbers and constant standing crop size, however, suggested that the algal bloom may have already reached stationary growth phase, possibly minimizing their photoadaptive response.  相似文献   

7.
We investigated the under-ice light climate and the efficiency with which light was absorbed and utilized by benthic algal mats in Lakes Hoare and Vanda, two perennially ice-covered lakes in the McMurdo Dry Valleys area of Southern Victoria Land, Antarctica. The ice cover and water column of Lake Vanda were much more transparent than those of Lake Hoare (18% vs. 2% transmission though ice and attenuation coefficients for downwelling irradiance of 0.05 vs. 0.12 m 1, respectively). In both lakes the under-ice spectra were dominated by blue-green wavelengths. The benthic flora under perennial ice covers of both lakes comprised thick mucilaginous mats, dominated by cyanobacteria. The mats were well suited to absorb the dominant blue-green wavelengths of the under-ice light, with phycoerythrin being present at high concentrations. The pigment systems of the benthic mats absorbed 30%–50% of the light that reached them, varying with depth and lake. There was a tendency for the percentage of absorption to increase as ambient irradiance decreased. The efficiency of utilization of absorbed irradiance was examined by constructing absorbed irradiance/oxygen evolution curves to estimate community quantum yield. Mats from 13 m in Lake Hoare showed the highest quantum yields, approaching 1 mol of carbon fixed for every 8 mol quanta absorbed under light-limiting conditions. Lake Vanda mats had lower quantum yields, but these increased with depth. Calculated in situ irradiance occasionally exceeded the measured saturating irradiance for oxygen evolution in both lakes, thus efficiency in situ was below the maximum at times. As in other environments, optimization strategies allowed efficient capture and utilization of the lower and middle ranges of experienced irradiance but led to a compromised capacity to use the highest irradiances encountered at each depth.  相似文献   

8.
Summary Four autotrophic compartments were recognised in Lake Kitiesh, King George Island (Southern Shetland) at the beginning of the summer in 1987: snow microalgae, ice bubble communities, phytoplankton in the water column and benthic communities of moss with epiphytes. Chlorophyll a concentration and pigment absorption spectra were obtained in these four compartments before and/or after the thawing of the ice cover. During the ice free period, carbon fixation and biomass was measured in the phytoplankton and in the benthic moss Campyliadelphus polygamus. From these measurements we conclude that the benthic moss is the most significant autotrophic component in this lake in terms of biomass, chlorophyll a content and primary productivity. The integral assimilation number (The ratio of carbon fixation per unit area to biomass per unit area) values were similar for both phytoplankton and the moss, ranging from 3.6 to 5.4 mg C (mg Chl a)–1h–1in phytoplankton and from 4.0 to 6.4 mgC (mg Chl a)–1h–1 in the benthic moss. This approach allows comparisons of carbon fixation efficiency of the chlorophyll a under a unit area between compartments in their different light environments.  相似文献   

9.
Plankton ecology was examined during the 1986 winter in Grand Traverse Bay, a 190 m deep, fjordlike bay on Lake Michigan. Before ice cover, algal concentration was low and uniformly distributed with depth, as it is in open Lake Michigan. During ice cover (February and March), a bloom of a typical winter-spring phytoplankton community developed in the upper 40 m, resulting in a 4 to 7-fold increase in feeding rate of adult Diaptomus spp. High algal concentration and zooplankton feeding persisted after ice melt (April). During and after ice cover, lipid concentrations of Diaptomus dropped rapidly from 34% of dry weight to 17 % because of egg production. High incident photosynthetically active radiation (PAR), high (45–50%) PAR transmittance of the ice due to little snow on the ice, and water column stability were probably responsible for the bloom. High ice transparency may be a common feature of large lakes and bays, where strong winds blow snow cover off the ice, or at low latitudes where snowmelt due to occasional rains and warm temperature is common. Winter reproducing calanoid copepods use these blooms to increase their reproductive output.  相似文献   

10.
Winter ice cover is a fundamental feature of north temperate aquatic systems and is associated with the least productive months of the year. Here we describe a previously unknown freshwater habitat for algal and microbial communities in the ice cover of the freshwater St. Lawrence River, Quebec, Canada. Sampling performed during winter 2005 revealed the presence of viable algal cells, such as Aulacoseira islandica (O. Müll.) Simonsen (Bacillariophyceae), and microbial assemblage growing in the ice and at the ice–water interface. Vertical channels (1–5 mm wide) containing algae were also observed. Concentrations of chl a ranged between 0.5 and 169 μg · L?1 of melted ice, with maximal concentrations found in the lower part of the ice cores. These algae have the potential to survive when ice breakup occurs and reproduce rapidly in spring/summer conditions. Freshwater ice algae can thus contribute to in situ primary production, biodiversity, and annual carbon budget in various habitats of riverine communities.  相似文献   

11.
Spectral downwelling irradiance in an Antarctic lake   总被引:1,自引:0,他引:1  
Summary Spectral downwelling irradiance (400–700 nm) was determined in the ice-covered Lake Hoare located in the dry valleys near McMurdo Sound, Antarctica. Full waveband PAR beneath the ice was <44E·m-2·s-1 or <3% of surface downwelling irradiance. Maximum light transmission just beneath the 2.6–4 m ice cover, which contained sediments and air bubbles, occurred between 400–500 nm. In the water column below, attenuation of light by phytoplankton in the 400–500 nm region and between 656–671 nm suggested absorption of light by algal pigments.  相似文献   

12.
An abundant and diverse bacterial community was found within brine channels of annual sea ice and at the ice-seawater interface in McMurdo Sound, Antarctica, in 1980. The mean bacterial standing crop was 1.4 × 1011 cells m−2 (9.8 mg of C m−2); bacterial concentrations as high as 1.02 × 1012 cells m−3 were observed in ice core melt water. Vertical profiles of ice cores 1.3 to 2.5 m long showed that 47% of the bacterial numbers and 93% of the bacterial biomass were located in the bottom 20 cm of sea ice. Ice bacterial biomass concentration was more than 10 times higher than bacterioplankton from the water column. Scanning electron micrographs showed a variety of morphologically distinct cell types, including coccoid, rod, fusiform, filamentous, and prosthecate forms; dividing cells were commonly observed. Approximately 70% of the ice bacteria were free-living, whereas 30% were attached to either living algal cells or detritus. Interactions between ice bacteria and microalgae were suggested by a positive correlation between bacterial numbers and chlorophyll a content of the ice. Scanning and transmission electron microscopy revealed a close physical association between epibacteria and a dominant ice alga of the genus Amphiprora. We propose that sea ice microbial communities are not only sources of primary production but also sources of secondary microbial production in polar ecosystems. Furthermore, we propose that a detrital food web may be associated with polar sea ice.  相似文献   

13.
Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.  相似文献   

14.
Little is known of the wider Antarctic distribution of the upper fast ice community now comprehensively described from McMurdo Sound. We determined the fast ice protist community at Davis Station, East Antarctica and compared it with that of McMurdo Sound. As at McMurdo Sound, Davis fast ice is characterised by extreme and transitory salinities (96–2.5 psu) and temperatures (−4.5 to −0.1°C) during the spring/summer transition. Both communities are dominated by Polarella glacialis (an autotrophic dinoflagellate), chrysophytes and their life cycle stages. Furthermore, the physical parameters of brine temperature and salinity at which these successions occurred approximated those of McMurdo Sound. The high degree of similarity between the communities from the geographically disparate locations indicates that this community type has a circum-Antarctic distribution. Confirming the areal extent and seasonality of this community type will assist in future predictions of sea ice productivity.  相似文献   

15.
 The zooplankton of the under-shelf-ice ecosystem at White Island (78°10′ S, 167°30′ E), McMurdo Sound, Antarctica was investigated during December 1976 and January 1977. The water column was sampled through a hole in the McMurdo Ice Shelf over a water depth of 67 m. Seawater temperatures under the ice shelf ranged from −1.91 to 1.96°C. Dissolved oxygen levels ranged from 5.0–6.05 ml l-1 in early December to 4.65–4.8 ml l-1 in late January. Current speeds of up to 0.13 m s-1 were recorded at a depth of 50 m and a predominantly northward flow was detected. Light levels under the shelf ice were low with less than 1% of the incident light being transmitted to a depth of 3 m. No chlorophyll a was detected within the water column throughout the investigation. Mean zooplankton biomass values in the water column ranged from 12 to 447 mg wet weight m-3 and were similar to values recorded elsewhere from Antarctic inshore waters, but were very much higher than those recorded from under seasonal sea ice in McMurdo Sound. Thirty-two zooplankton species were recorded including 1 ostracod, 21 copepods (10 calanoids, 3 cyclopoids and 8 harpacticoids), 4 amphipods, 2 euphausiids, a chaetognath and 3 pteropods. Larvae of polychaetes and fish were found on some occasions. The species composition in general was similar to that recorded from McMurdo Sound and other Antarctic inshore localities. Among the Copepoda, however, there were a number of species, especially among the Harpacticoidea, that have not been found previously in McMurdo Sound and the Ross Sea, but that are known to be associated with ice in other localities in Antarctica. Two recently described species are known only from White Island. They were present in the water column but were most abundant in the surface water of the tide crack where they were the most abundant zooplankters. The tide crack, which probably is an extension of the under-ice habitat, is apparently a significant nursery area for amphipods and copepod species. Received: 23 November 1994/Accepted 7 May 1995  相似文献   

16.
The response of Baltic Sea ice communities to changing light climate was studied in three subsequent 3 week in situ experiments on the SW coast of Finland. The investigation covered three different winter periods, short day with low solar angles leading to limited light in the ice, late winter with deep snow cover and early spring with melting snow and increasing light availability. The experimental setup consisted of transparent (no snow) and completely darkened (heavy snow cover) plexiglass tubes in which the ice cores were incubated in situ from 1 to 2 weeks. Changes in the concentrations of inorganic nutrients (NO3-–N, PO43−-–P, SiO4-–Si) and chlorophyll-a concentration in the phytoplankton community composition were recorded as responses to different light manipulations. Changes in inner ice light intensity in untreated ice as well as the temperature both in air and ice were recorded over the entire study period. Increased irradiance in late winter/early spring and during meltdown affected the chlorophyll-a amount in the sea ice. During these periods the phytoplankton community in the top layers decreased possibly as a consequence of photo-acclimation. Closer to the bottom of the ice, however, the increased inner ice light intensity induced algal growth. Complete exclusion of light stopped the algal growth in the whole ice column. Darkening the ice cores also slowed down the ice melting opposite to accelerated melting caused by increased light. The significant differences found in nutrient concentrations between the light and dark treatments were mostly explicable by changes in algal biomass. No obvious changes were observed in the phytoplankton community composition due to light manipulation, diatoms and heterotrophic flagellates dominating throughout the study period.  相似文献   

17.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

18.
In ice-covered Arctic seas, the ice algal production can be the main input of organic matter to the ecosystem. Pelagic–benthic coupling is thought to be particularly tight in those areas. The increase in ice algal production in Franklin Bay from January/February to April/May 2004 paralleled an increase in benthic oxygen demand. However, sedimentary chlorophyll a, which is usually an indicator of “fresh” organic matter inputs to the sea floor, did not increase. Consequently, it was asked what was the fate of the ice algal phytodetritus arriving at the sea floor? To answer this question, photosynthetic pigments from the sea ice, water column particulate organic matter, and sediment, as well as diatom frustules in the sediment, were studied from January to May 2004. The number of ice diatom cells in the sediment showed an increase in April/May, confirming higher inputs of fresh ice algae to the sediment. Changes in sedimentary pigment profiles in the first 10 cm suggested an increase in bioturbation due to enhanced benthic activities. Finally, the decrease in the ratio of chlorophyll a to phaeophorbide a implied an increase in macrobenthic activity. Benthic macrofauna consumed some of the deposited material and mixed some within the top five cm of sediment. The response of sedimentary pigments to an ice algal input can be studied at different levels and it is only the combination of these studies that will allow an understanding of the overall fate of phytodetritus in the benthic compartment.  相似文献   

19.
Production and hydrochemical characteristics of ice, under-ice water, and sediments in the Razdol’naya River estuary (Sea of Japan) were studied during the ice cover periods of the years 2007 and 2008. In 2007, snow cover was absent until mid-February and PAR levels under ice were sufficient for the development of phytoplankton. The chlorophyll a content in ice, under-ice water, and surface sediments was high, while nutrient levels were decreased. After a snowfall, the chlorophyll content in ice and under-ice water decreased sharply. In winter 2008, snow cover was formed immediately after freeze-up; therefore, PAR levels in the ice and under-ice water were significantly reduced. The chlorophyll content was lower, but nutrient levels were higher than in 2007. In both winter seasons, the greatest portion of chlorophyll (up to 85%) was contained in surface sediments. Diatoms were dominant in ice and under-ice water. In the absence of snow, primary production at the end of ice cover period may reach 1 g cal/(m2 day). With snow cover present, this index was markedly reduced.  相似文献   

20.
Using the ice algal community growing at the bottom of the annual sea ice in McMurdo Sound Antarctica, the response of the photoprotective diadinoxanthin (DD)-cycle to exposure to light was investigated. Changes in pigment concentration were detected using high-performance liquid chromatography. A light mixing simulator (LMS) was developed and used to simulate the pigment response to mixing in the upper water column. No DD-cycle was detected under the sea ice under natural light conditions. The DD-cycle was activated after exposure to surface natural light conditions and artificial light conditions. The first-order kinetic rates of the DD-cycle under constant artificial irradiance, natural irradiance and simulations with the LMS were found to be similar to other studies suggesting that ice algae do not vary the rate of deepoxidation depending on light history. Simulations under natural light using the LMS demonstrated that the response of the DD-cycle to static incubations and when subject to vertical mixing was not similar, and that static incubations overestimate DD-cycle activity over the long term. Algae in a simulated vertically mixed environment were able to increase the pool of xanthophyll pigments compared to static conditions where the pool remained the same or decreased. The recovery of DD in the dark or under low light was found to be significantly faster than in temperate algal communities. These results suggest that ice algae at the sea ice bottom can activate the photoprotective DD-cycle to regulate excess thermal energy. Unlike temperate species of diatoms, ice algae can rapidly reconstruct the pigment pool under low light or in the dark and is likely a particular adaptation to the unique light environment in Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号