首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diversity of odorant-binding proteins and chemosensory proteins in insects   总被引:4,自引:0,他引:4  
Pelosi P  Calvello M  Ban L 《Chemical senses》2005,30(Z1):i291-i292
  相似文献   

2.
The sensilla on labial palps in Locusta migratoria were observed and mapped using light microscopy, scanning and transmission electron microscopy. A dome region on the tip of the fourth segment (distal segment) of labial palps is mainly covered with sensilla chaetica (about 98%), and few sensilla basiconica (2%). The total number of both types of sensilla is significantly higher in females than in males. Sensilla chaetica can be further subdivided into three groups containing 6, 7 or 10 neurons. Immunocytochemical localization of odorant-binding protein (OBP) and chemosensory proteins (CSPs) was performed on ultrathin sections of sensilla on labial palps. The antiserum against odorant-binding protein from Locusta migratoria (LmigOBP) only labelled sensilla basiconica, with gold granules only found in the sensillum lymph. Chemosensory protein instead was specifically present in the outer sensillum lymph of all three subgroups of sensilla chaetica with antiserum against CSP-I from Schistocerca gregaria (SgreCSP-I). In contrast these three subgroups were never labelled with antiserum against CSP-II from Locusta migratoria (LmigCSP-II). In addition, a few sensilla chaetica could not be stained with any of the antisera used.  相似文献   

3.
4.
M S Kim  A Repp  D P Smith 《Genetics》1998,150(2):711-721
The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wild-type flies have an active olfactory avoidance mechanism to prevent attraction to concentrated alcohol, and this response is defective in lush mutants. This suggests that the defective olfactory behavior associated with the lush mutation may result from a specific defect in chemoavoidance. lush mutants have a 3-kb deletion that produces a null allele of a new member of the invertebrate odorant-binding protein family, LUSH. LUSH is normally expressed exclusively in a subset of trichoid chemosensory sensilla located on the ventral-lateral surface of the third antennal segment. LUSH is secreted from nonneuronal support cells into the sensillum lymph that bathes the olfactory neurons within these sensilla. Reintroduction of a cloned wild-type copy of lush into the mutant background completely restores wild-type olfactory behavior, demonstrating that this odorant-binding protein is required in a subset of sensilla for normal chemosensory behavior to a subset of odorants. These findings provide direct evidence that odorant-binding proteins are required for normal chemosensory behavior in Drosophila and may partially determine the chemical specificity of olfactory neurons in vivo.  相似文献   

5.
昆虫化学感受蛋白   总被引:4,自引:0,他引:4  
龚亮  陈永  程功  钟国华 《昆虫知识》2009,46(4):646-652
化学感受蛋白(chemosensory proteins,CSPs)是广泛存在于各种昆虫的疏水性蛋白,被认为在昆虫嗅觉行为中执行了运载非挥发性气味分子到达相应受体的功能。文章从序列特征、二级和三维结构、结合配体、表达特征、生理功能和进化地位等方面进行较详细的介绍,并从理论和实践角度探讨CSPs的研究前景和重点。  相似文献   

6.
Odorant-binding proteins (OBPs) are small soluble polypeptides found in sensory organs of vertebrates and insects as well as in secretory glands and are dedicated to detection and release of chemical stimuli. OBPs of vertebrates belong to the family of lipocalin proteins, while those of insects are folded into α-helical domains. Both types of architectures are extremely stable to temperature, organic solvents and proteolytic digestion. These characteristics make OBPs suitable elements for fabricating biosensors to be used in the environment, as well as for other biotechnological applications. The affinity of OBPs for small volatile organic compounds is in the micromolar range, and they have broad specificity to a range of ligands. For biotechnological applications, OBPs can be expressed in bacterial systems at low cost and are easily purified. The large amount of information available on their structures and affinities to different molecules should allow the design of specific mutants with desired characteristics and represent a solid base for tailoring OBPs for different applications.  相似文献   

7.
T N Dear  K Campbell  T H Rabbitts 《Biochemistry》1991,30(43):10376-10382
Olfactory reception occurs via the interaction of odorants with the chemosensory cilia of the olfactory receptor cells located in the nasal epithelium. The cDNA clones from mRNA specific to olfactory mucosa were studied. One of these clones, OBPII, encodes a secretory protein with significant homology to odorant-binding protein (OBP), a protein with broad odorant-binding ability, and is expressed in the lateral nasal gland, which is the site of expression of OBP. The OBPII sequence also shows significant homology to the VEG protein, which is thought to be involved in taste transduction. OBPII is a new member of the lipophilic molecule carrier protein family. The second cDNA clone encodes a novel homologue of glutathione peroxidase, an enzyme involved in cellular biotransformation pathways. Its expression appears to be localized to the Bowman's glands, the site of several previously identified olfactory-specific biotransformation enzymes.  相似文献   

8.
Conformational isomers of insect odorant-binding proteins.   总被引:5,自引:0,他引:5  
We have identified and cloned the cDNAs encoding odorant-binding proteins (OBPs) from the large black chafer, Holotrichia parallela, and the yellowish elongate chafer, Heptophylla picea. Each species possess two OBPs, the proteins migrating faster in native gels (OBP1) showed high amino acid identity (>88%) to previously identified pheromone-binding proteins (PBPs) from scarab beetles. HparOBP1 and HpicOBP1 have 116 amino acids and six highly conserved cysteine residues. In contrast to OBP1 that gave a single band, both HparOBP2 and HpicOBP2 separated each into two bands in native gels (15%). The N-terminal amino acid sequences for the two bands from each species were indistinguishable, and they had the same molecular masses. Although we sequenced several clones from each species, they all encode only one protein for each species, indicating they are different conformational isomers of the same protein. HparOBP2 and HpicOBP2 have 133 amino acids and cysteine residues are conserved in proteins of the same family.  相似文献   

9.
Detection of chemical signals from the environment through olfaction is an indispensable mechanism for maintaining an insect’s life, evoking critical behavioral responses. Among several proteins involved in the olfactory perception process, the odorant binding protein (OBP) has been shown to be essential for a normally functioning olfactory system. This paper discusses the role of OBPs in insect chemoreception. Here, structural aspects, mechanisms of action and binding affinity of such proteins are reviewed, as well as their promising application as molecular targets for the development of new strategies for insect population management and other technological purposes.  相似文献   

10.
Conserved odorant-binding proteins from aphids and eavesdropping predators   总被引:1,自引:0,他引:1  

Background

The sesquiterpene (E)-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E)-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphid-predator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs), which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E)-ß-farnesene.

Methodology

We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E)-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant.

Conclusion

We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E)-ß-farnesene with apparent high affinity. For the first time we have demonstrated that insect species belonging to distinct Orders have conserved OBPs, which specifically bind a common semiochemical and has no binding affinity for related compounds.  相似文献   

11.
昆虫化学感受蛋白研究进展   总被引:15,自引:4,他引:11  
昆虫化学感受蛋白(chemosensory proteins)是在长期进化过程中形成的一类低分子量酸性可溶性蛋白,广泛分布于昆虫触角、跗节等各种化学感受器中,蛋白质序列具有较高的保守性,种内种间同源性一般为30%~90%。其主要功能是感受、识别、转运、传导环境化学因子刺激信息,参与调节生理节律和生长发育。该文从昆虫化学感受蛋白的生态进化意义、分布表达部位、生化特性、分子结构、生理功能和研究方法等角度,较详细地综述了近年来国内外昆虫化学感受蛋白的研究进展,指出昆虫化学感受蛋白的深入研究,对于阐明昆虫与环境化学信息联系规律、昆虫行为反应本质原因,探索害虫综合治理和益虫利用效率新途径,开辟创制昆虫行为控制剂新领域等具有重要的理论和实践意义。  相似文献   

12.
刘勇  倪汉祥  胡萃 《昆虫知识》2000,37(6):367-371
20世纪 8 0年代后 ,人们开始探求昆虫对气味物质的感受机制。随着昆虫行为学、生物化学、分子生物学以及昆虫电生理技术的飞速发展 ,自 90年代开始 ,深入研究昆虫的嗅觉反应机理已有可能。研究表明 ,昆虫触角中的气味结合蛋白 (odorant-binding protein简称 ,OBP)在昆虫嗅觉反应过程中起重要作用[1] 。本文试从气味分子的化学结构及特征、OBP的化学特性、生理功能及研究展望等方面作一综述 ,以期推动该领域的研究与发展。1 气味分子的化学结构及特征明确气味分子的化学结构及特征 ,有助于确定气味结合蛋白的结构。目前研究以鳞翅目昆虫…  相似文献   

13.
To obtain more information on the elements of chemical communication in the migratory locust (Locusta migratoria) (Orthoptera: Acrididae), we have searched for additional odorant-binding proteins (OBPs) and for volatiles in the feces that could represent potential semiochemicals for this species. A two-dimensional electrophoretic (2DE) analysis of an antennal extract showed only three closely positioned spots that were recognized by the antiserum against locust OBP. Three genes were also identified using PCR and 5'RACE-PCR approaches, encoding isoforms differing from each other for a single amino acid substitution. The gas-chromatographic-electroantennogram (GC-EAD) headspace analysis of a feces sample revealed the presence of several compounds that elicited dose-dependent electrophysiological responses in the antennae of both sexes. Most of these compounds are different from those identified in the feces of the desert locust (Schistocerca gregaria) and reported to be behaviorally active. Ligand-binding experiments performed with such volatiles and recombinant OBP did not show affinity, thus indicating that the binding pocket of OBP requires larger molecules than those so far identified.  相似文献   

14.
Binding of selected odorants to bovine and porcine odorant-binding proteins   总被引:1,自引:0,他引:1  
Twenty floral smelling tetrahydropyranyl and tetrahydrofuranylethers, and 12 additional compounds with different odours wereused in ligand-binding experiments with purified 19 kDa bovineOBP and 22 kDa porcine OBP. Most of the odorants examined werefound to be good ligands for both proteins, with dissociationconstants in the micromolar range; the data confirm the broadbinding specificity of OBPs. Significant differences, however,measured with some odorants, indicate the possibility of usingOBPs, purified from several animal species, in biosensors forodour discrimination.  相似文献   

15.
Two novel odorant-binding proteins (OBPs) of locust, LmigOBP2 and LmigOBP3 are very different from each other and from the previously reported LmigOBP1 in their amino acid sequences. Moreover, OBP3 contains three additional cysteines, a fact not previously recorded in standard length OBPs. However, these two proteins exhibit remarkably similar binding affinities to a set of organic compounds. Such behaviour is supported by three-dimensional models, showing very similar folding for LmigOBP2 and LmigOBP3, but clearly different for LmigOBP1. Also several amino acid residues lining the binding pockets of the three proteins appear conserved in LmigOBP2 and LmigOBP3, but not in LmigOBP1. Western blot experiments revealed the presence of LmigOBP2 in antennae, mouth parts and cerci, but could not detected LmigOBP3 in any of these tissues. In immunocytochemistry, antibodies against LmigOBP2 strongly stained the outer lymph of sensilla chaetica of the antennae, in contrast with LmigOBP1, previously reported in sensilla basiconica.  相似文献   

16.
The hairs on the wings of Locusta migratoria were observed and mapped using light microscopy, as well as by scanning and transmission electron microscopy. Based on their ultrastructure, we can distinguish four main types of hairs on the wings of adult L. migratoria , viz, short, medium and long hairs, and sensilla chaetica. The long hairs are located only on the ventral surface of the hindwing, whereas the other three types are present both on the dorsal and ventral surfaces of forewing and hindwing in both sexes. Medium hairs and sensilla chaetica are significantly more abundant on the dorsal surface of forewings in both females and males, than on the ventral surface, whereas the opposite was observed for short hairs (P < 0.01). No significant difference between males and females was observed in the density of any type of hairs (P > 0.1). Several dendritic branches, enveloped by a dendrite sheath, are situated in the lymph cavity of sensilla chaetica. Instead, no dendritic structure was observed in the cavity of the other three types of hairs. Immunocytochemical localization of chemosensory proteins (CSPs) was performed on ultrathin sections of hairs on wings. The antiserum against chemosensory proteins from L. migratoria (LmigCSP-II) strongly labelled sensilla chaetica, with gold granules only found in the outer sensillum lymph. In addition, the epidermal cell membrane of the wing was stained by the antiserum against LmigCSP-II. The other three types of hairs were never labelled. The results indicate that the wings might involve in contact chemoreception process.  相似文献   

17.
18.
The detection of odorants in vertebrates is mediated by chemosensory neurons that reside in the olfactory epithelium of the nose. In land-living species, the hydrophobic odorous compounds inhaled by the airstream are dissolved in the nasal mucus by means of specialized globular proteins, the odorant-binding proteins (OBPs). To assure the responsiveness to odors of each inhalation, a rapid removal of odorants from the microenvironment of the receptor is essential. In order to follow the fate of OBP/odorant complexes, a recombinant OBP was fluorescently labeled, loaded with odorous compounds, and applied to the nose of a mouse. Very quickly, labeled OBP appeared inside the sustentacular cells of the epithelium. This uptake occurred only when the OBP was loaded with appropriate odorant compounds. A search for candidate transporters that could mediate such an uptake process led to the identification of the low density lipoprotein receptor Lrp2/Megalin. In the olfactory epithelium, megalin was found to be specifically expressed in sustentacular cells and the Megalin protein was located in their microvilli. In vitro studies using a cell line that expresses megalin revealed a rapid internalization of OBP/odorant complexes into lysosomes. The uptake was blocked by a Megalin inhibitor, as was the internalization of OBPs into the sustentacular cells of the olfactory epithelium. The results suggest that a Megalin-mediated internalization of OBP/odorant complexes into the sustentacular cells may represent an important mechanism for a rapid and local clearance of odorants.  相似文献   

19.
Fluorescence-linked binding assays allow determination of dissociation constants at equilibrium and have recently become increasingly popular, thanks to their ease of operation. Currently used probes, such as 1-aminoanthracene and N-phenyl-1-naphthylamine, are excited and emit in the ultraviolet region, but alternative ligands operating in the visible spectrum would be highly desirable for applications in biosensing devices. Based on the two above structures, we have designed and synthesised six new fluorescent probes to be used in ligand-binding assays. The compounds are derivatives of naphatalene, anthracene and fluoranthene and present two aromatic moieties linked by an amine nitrogen. We have measured the emission spectra of the new probes and their binding to three odorant-binding proteins. The probes bind the tested proteins with different affinities, generally with dissociation constants about one order of magnitude lower than the parent compounds. The extended aromatic systems present in the new compounds produced a shift of both excitation and emission peaks at higher wavelength, close or within the visible spectrum, thus facilitating measurements in biosensors for odorants and small organic molecules using optical devices.  相似文献   

20.
In insects, hydrophobic odorants are transported through the sensillar lymph to receptors on sensory neurons by odorant-binding proteins (OBPs). The beetle Tenebrio molitor, which is a pest of stored grain products, produces a set of 12-14-kDa OBP-like proteins in its hemolymph. The structure of one of these proteins and that of a moth pheromone-binding protein have been solved. Both proteins have at least six alpha-helices with an internal, hydrophobic, ligand-binding pocket, but the beetle OBP lacks one of the disulfide bonds immediately adjacent to this pocket. To explore this difference and to sample isoform diversity, T. molitor hemolymph OBPs were fractionated by size-exclusion chromatography and reversed-phase high performance liquid chromatography. Selected fractions were reduced and alkylated, and tryptic peptides were sequenced by tandem mass spectrometry. Partial sequences of 7 different isoforms were obtained and used to clone 9 new cDNAs encoding OBPs with identities from 32 to 99%. The more divergent isoforms have numerous substitutions of hydrophobic residues that presumably alter the shape and specificity of the ligand-binding pocket. These isoforms all lack the same third disulfide bridge and are more similar to one another than to any of the 38 OBPs in Drosophila melanogaster. They have presumably arisen via gene duplication following separation of the major insect orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号