首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have solubilised the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat cerebellum using 3-[(3-cholamidopropyl)dimethylammonio] 1-propane sulphonate (CHAPS) in the presence of a natural brain lipid extract and cholesteryl hemisuccinate. The soluble material shows a homogeneous [3H]flunitrazepam ([3H]FNZ) binding population with an equilibrium dissociation constant (KD) of 4.4 +/- 0.2 nM compared to a KD of 2.3 +/- 0.2 nM in cerebellar synaptosomal membranes. The receptor complex in solution retains the characteristic facilitation of [3H]flunitrazepam binding induced by GABA, the pyrazolopyridine cartazolate, and the depressant barbiturate pentobarbital to the same extent as that observed in synaptosomal membranes. Furthermore, these responses are retained both quantitatively and qualitatively when this preparation is stored for 48 h at 4 degrees C. This is contrary to the results obtained with a CHAPS-soluble preparation including asolectin in which these responses are anomalous and extremely labile on storage.  相似文献   

2.
We have solubilized, affinity-purified, and functionally reconstituted the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat brain into natural brain lipid liposomes. The detergent, 3-[(3-cholamidopropyl)-dimethylammonio] 1-propanesulphonate, was employed for the isolation of the receptor in the presence of a whole rat brain lipid extract supplemented with cholesteryl hemisuccinate. The soluble and reconstituted protein showed a homogeneous [3H]flunitrazepam binding population and the allosteric modulation of this binding site by GABA, by the pyrazolopyridine, cartazolate, and by the depressant barbiturate, pentobarbital. The purified GABA/BDZ receptor when incorporated into liposomes has been visualized by electron microscopy and reveals rosette structures, 8-9 nm in diameter, which appear to have a central pore. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the reconstituted GABA/BDZ receptor reveals three major protein bands of 41, 52-56, and 59-62 kDa, the latter two of which appears as doublets. Functional receptor reconstitution is demonstrated by the measurement of GABA-stimulated 36Cl- flux into the purified GABA/BDZ receptor incorporated liposomes and its modulation by the BDZs, barbiturates, and pyrazolopyridines.  相似文献   

3.
Rat brain opioid receptors were solubilized with digitonin and a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The yield of solubilization was 70-75% with digitonin and 30-35% with CHAPS. Kinetic and equilibrium studies performed from digitonin extracts resulted in KD values comparable with those of the membrane fractions. Two [3H]naloxone binding sites were obtained in the extracts similarly to membrane fractions. The rank order potency of drugs used in the competition experiments did not change during solubilization. The distributions of mu, delta, and kappa opioid receptor binding sites were similar in membrane and digitonin-solubilized fractions (48-50% mu, 35-37% kappa, and 13-17% delta subtypes). The hydrodynamic properties of digitonin- and CHAPS-solubilized preparations were studied by sucrose density gradient centrifugation and Sepharose-6B chromatography. In all cases, two receptor populations were identified with the following parameters: sedimentation coefficients for the digitonin extracts were 9.2S and 13.2S and for CHAPS extract 8S and 15.6S; the Stokes radii were 45 A and 65A for the digitonin extract and 31A and 76A for the CHAPS-solubilized preparation.  相似文献   

4.
Specific binding of [35S]t-butylbicyclophosphorothionate (TBPS) to rat brain membranes (RBM) is enhanced nine-fold by EDTA/water dialysis and 1.3- to 4.2-fold by 50 nM ketosteroid R 5135, or 5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or related piperazine-N-alkanesulfonate buffers, or extensive washing with NaCl/Na phosphate or Na phosphate/citrate solution. About one-fifth of the [35S]TBPS binding capacity appears in the soluble fraction whereas the rest remains in particulate form on treatment of the EDTA/water-dialyzed RBM with 20 mM CHAPS. Similar KD values (64-86 nM) are obtained for the original EDTA/water-dialyzed membranes and the CHAPS-treated and/or -solubilized preparations. The Bmax of the EDTA-treated RBM is reduced five-fold on solubilization with CHAPS. The potency for displacement of [35S]TBPS changes in the presence of CHAPS or on CHAPS solubilization: gamma-aminobutyric acid (GABA) and muscimol inhibit specific [35S]TBPS binding more strongly in the absence than in the presence of CHAPS: TBPS, picrotoxinin, and photoheptachlor epoxide are almost equally active with RBM, RBM + CHAPS, and RBM solubilized with CHAPS. Levels of (1R, alpha S)-cis-cypermethrin and dimethylbutylbarbiturate which are inhibitory with RBM are moderately stimulatory after TBPS receptor solubilization. Thus CHAPS defines three regions of the GABA receptor-ionophore complex, i.e., the GABA and benzodiazepine receptors, the TBPS/picrotoxinin/polychlorocycloalkane receptor(s), and the sites at which the alpha-cyano pyrethroid and the barbiturate interact with TBPS binding.  相似文献   

5.
Binding of the benzodiazepine inverse agonist [3H]methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate [( 3H]DMCM) and the agonist [3H]flunitrazepam [( 3H]FNZ) was compared in rat cortical membranes. Halide ions enhanced [3H]DMCM binding three- to fourfold, increasing both the apparent affinity and the number of binding sites for this radioligand. The effect was present at both 0 and 37 degrees C. In contrast, the magnitude of halide stimulation of [3H]FNZ binding was much smaller, resulting solely from an increase in the apparent affinity for this radioligand, and was not observed at 37 degrees C. The potencies but not the efficacies of a series of anions to stimulate both [3H]DMCM and [3H]FNZ binding to benzodiazepine receptors were highly correlated with their relative permeabilities through gamma-aminobutyric acid (GABA)-gated chloride channels. Two stress paradigms (10 min of immobilization or ambient-temperature swim stress), previously shown to increase significantly the magnitude of halide-stimulated [3H]FNZ binding, did not significantly affect [3H]DMCM binding. Phospholipase A2 treatment of cortical membrane preparations was equipotent in preventing the stimulatory effect of chloride on both [3H]DMCM and [3H]FNZ binding. These data strongly suggest that anions modify the binding of [3H]DMCM and [3H]FNZ by acting at a common anion binding site that is an integral component of the GABA/benzodiazepine receptor chloride channel complex.  相似文献   

6.
Abstract: Barbiturates enhance the binding of [3H]flunitrazepam to benzodiazepine receptors solubilized with the detergent 3-[(3-cholamidopropyl)-dimethylammonio]propanesulfonate (CHAPS) from bovine cortex. The enhancement by the barbiturates is seen as a decrease in the dissociation constant, K d , for specific benzodiazepine binding, with no effect on the number of binding sites. The effect of the barbiturates is facilitated by chloride ions, is concentration-dependent, and has a specificity that correlates well with the anesthetic potency of barbiturates. [3H]Flunitrazepam binding activity is stable with storage at 4°C., but barbiturate enhancement of soluble benzodiazepine binding activity decayed rapidly ( t 1/2= 48 h). [3H]Muscimol binding (GABA receptor) activity was also enhanced by barbiturates. Agarose gel filtration column chromatography of the CHAPS-solubilized receptor proteins showed the same elution profile as receptors solubilized with sodium deoxycholate, and enhancement by barbiturates was observed for both the benzodiazepine and GABA binding activities.  相似文献   

7.
Ethanol and the γ-Aminobutyric Acid-Benzodiazepine Receptor Complex   总被引:3,自引:2,他引:1  
Abstract: Ethanol appears to enhance γ-aminobutyric acid (GABA)-mediated synaptic transmission. Using radioligand binding techniques, we investigated the possibility that the GABA-benzodiazepine receptor complex is the site responsible for this effect. Ethanol at concentrations up to 100 m M failed to alter binding of [3H]flunitrazepam (FNZ), [3H]Ro 15-1788, or [3H]methyl-γ-carboline-3-carboxylate (MBCC) to benzodiazepine receptors, or of [3H]muscimol to GABA receptors in rat brain membranes. Scatchard analyses of the binding of these radioligands at 4°C and 37°C revealed no significant effects of 100 m M ethanol on receptor affinity or number. A variety of drugs as well as chloride ion increased binding of [3H]FNZ and/or [3H]muscimol, but these influences were not modified by ethanol. These findings indicate that ethanol probably potentiates GABAergic neurotransmission at a signal transduction site beyond the GABA-benzodiazepine receptor complex.  相似文献   

8.
Opioid receptors were solubilized from bovine striatal membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate-(CHAPS). High concentrations of NaCl (0.5-1.0 M) were necessary to ensure optimal yields, which ranged from 40 to 50% of membrane-bound receptors. This requirement was found to be specific for sodium, with only lithium able to substitute partially, as previously reported for solubilization with digitonin. Opioid antagonists, but not agonists, were able to bind to soluble receptors with high affinity. High-affinity binding of mu, delta, and kappa agonists was reconstituted following polyethylene glycol precipitation and resuspension of CHAPS extract. Evidence is presented suggesting that this is the result of inclusion of receptors in liposomes. Competition and saturation studies indicate that the three opioid receptor types retain their selectivity and that they exist in the reconstituted CHAPS extract in a ratio (50:15:35) identical to that in the membranes. In reconstituted CHAPS extract, as in membranes, mu-agonist binding was found to be coupled to a guanine nucleotide binding protein (G protein), as demonstrated by the sensitivity of [3H][D-Ala2,N-methyl-Phe4,Gly5-ol]-enkephalin ([3H]DAGO) binding to guanosine 5'-O-(thiotriphosphate) (GTP gamma S). In the reconstituted CHAPS extract, complete and irreversible uncoupling by GTP gamma S was observed, whereas membrane-bound receptors were uncoupled only partially. Treatment with GTP gamma S, at concentrations that uncoupled the mu receptors almost completely, resulted in a fourfold decrease in the Bmax of [3H]DAGO binding with a relatively small change in the KD. Competition experiments showed that the Ki of DAGO against [3H]bremazocine was increased 200-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Binding activity for the cage convulsant [35S]-tert-butylbicyclophosphorothionate, which appears to label a site closely associated with the chloride ionophore of the GABAA/benzodiazepine receptor complex has been solubilized from rat cerebral cortex using the zwitterionic detergent CHAPS. Of several detergents screened, only CHAPS and CHAPSO were capable of solubilizing the binding activity with good recovery. The pharmacologic specificity of soluble [35S]-tert-butylbicyclophosphorothionate binding is very similar to the membrane state. In both the membrane and soluble state, [35S]-tert-butylbicyclophosphorothionate binding is enhanced by anions which support inhibitory post-synaptic potentials (“Eccles anions”), suggesting that [35S]-t-butylbicyclophosphorothionate may label chloride channels thought to be involved in these potentials. Since this solubilization procedure also preserves GABA and benzodiazepine binding and their regulation by drugs such as barbiturates, purification and isolation of the macromolecular complex including chloride channel and GABA-benzodiazepine sites may be feasible.  相似文献   

10.
Solubilization of prostacyclin membrane receptors from human platelets   总被引:2,自引:0,他引:2  
Prostacyclin (PGI2) receptors have been identified on platelets and other tissues but their physicochemical properties remain unknown due to difficulties in obtaining active solubilized receptors. We evaluated the ability of several detergents to release the receptors from platelet membrane preparations. In contrast to the results of Dutta-Roy and Sinha (Dutta-Roy, A. K., and Sinha, A. K. (1987) J. Biol. Chem. 262, 12685-12691) which revealed selective solubilization of PGE1/PGI2 receptors by 0.05% Triton X-100, we found that CHAPS (3-[(3-chlamidopropyl)dimethylammonio]-1-propanesulfonic acid) (10 mM) was far superior in releasing the PGI2 receptors. In fact, Triton X-100 failed to release detectable PGI2 binding activity into the supernatant. The CHAPS-solubilized receptor degraded rapidly unless 30% glycerol was added which greatly enhanced its stability. By employing an improved binding assay using [3H]iloprost as the ligand and selective membrane filters (AP-15 or GF/B) pretreated with polyethyleneimine for achieving a higher trapping efficiency, we showed by equilibrium binding measurements that the solubilized receptors exhibited a single class of binding sites with a KD of 18.5 nM and Bmax 0.5 pmol/mg. These values were similar to those of the membrane receptors, i.e. KD of 16.6 nM and Bmax 1.0 pmol/mg. Kinetic binding measurements of the solubilized receptors revealed an association rate constant of 0.51 x 10(6) M-1 s-1 and dissociation rate constant of 0.0041 s-1 yielding a calculated KD of 8.0 nM. Displacement of [3H]iloprost (Ki values) from the solubilized and the membrane receptors by diversified eicosanoids was parallel. Our data demonstrate for the first time a successful solubilization of platelet PGI2 receptors. The solubilized receptors retained almost identical binding characteristics as the native membrane receptors.  相似文献   

11.
Solubilization of stable adenosine A1 receptors from rat brain.   总被引:1,自引:0,他引:1       下载免费PDF全文
Despite numerous reports of solubilization of adenosine A1 receptors, little progress has been made in isolating or purifying the receptor, owing to the extreme lability of the preparations. The present solubilization strategies recognized the possible role of endogenous adenosine to produce adenosine-receptor-N-protein complexes, which are intrinsically unstable, and instead attempted to use caffeine to solubilize free adenosine receptors, which might be more stable. Endogenous adenosine was removed from membranes by using adenosine deaminase along with GTP to accelerate the release of receptor-bound adenosine. The receptors were then occupied with caffeine and solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS) in the presence of glycerol. These soluble preparations exhibited the characteristics of free adenosine receptors. They bound the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPDPX) with high affinity to a single class of binding sites, which were insensitive to GTP. The binding activity was extremely stable, with a half-life of about 5 days at 4 degrees C; there was little change in either receptor number or affinity during 3 days at 4 degrees C. This methodology should greatly facilitate the characterization, isolation and purification of the adenosine A1 receptor.  相似文献   

12.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

13.
The receptor for the neuropeptide gastrin-releasing peptide, the mammalian homologue of bombesin, was solubilized from rat brain and Swiss 3T3 cells by using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) and the cholesteryl hemisuccinate ester (CHS). Only the combination of the detergent CHAPS and the cholesteryl ester CHS in a glycerol-containing buffer satisfactorily preserved the binding activity upon solubilization. Specific binding activity was only solubilized from cell lines and tissue preparations known to express the GRP receptor. The dissociation constant (Kd) for the receptor solubilized from rat brain and Swiss 3T3 cells was 0.6 nM, similar to the value of 0.8 nM calculated for the membrane-bound receptor. Binding was saturable and reached equilibrium after approximately 2 h at 4 degrees C. The identity of the solubilized receptor with the membrane-bound one was further confirmed by the concordance of the relative binding affinities of various established bombesin analogues.  相似文献   

14.
Galanin receptors were solubilized from rat brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). Binding of 125I-galanin to the soluble fraction was time- and temperature-dependent, saturable, and reversible. Scatchard analysis of binding data indicated that the soluble extract contained a single class of galanin binding sites with a Kd of 0.8 nM and a Bmax of 26 fmol/mg of protein. Unlabeled galanin and its fragments galanin(2-29) and galanin(1-15) antagonized the binding of 125I-galanin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane receptors. Galanin(3-29) was found inactive. Binding of 125I-galanin to CHAPS extracts was inhibited by guanine nucleotides with the following rank order of potency: GMP-P-(NH)P greater than GTP greater than GDP. Molecular analysis of the soluble galanin receptor by covalent cross-linking of 125I-galanin to CHAPS extracts using disuccinimidyl tartrate and further identification on SDS-PAGE indicated that the soluble galanin binding site behaves as a protein of Mr 54,000. After incubation of CHAPS extracts with 125I-galanin, gel filtration on Sephacryl S-300 followed by ultracentrifugation on sucrose density gradient revealed a binding component with the following hydrodynamic parameters: Stokes radius, 5 nm; s20,w, 4.5 S; Mr, 98,000; frictional ratio, 1.6. GMP-P(NH)P treatment of CHAPS extracts gave rise to a molecular form with the following characteristics: Stokes radius, 4 nm; s20,w, 3.3 S; Mr, 57,000; frictional ratio, 1.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

16.
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) acts primarily on receptors that increase chloride permeability in postsynaptic neurons. These receptors are defined by sensitivity to the agonist muscimol and the antagonist bicuculline, and are also subject to indirect allosteric inhibition by picrotoxin-like convulsants and enhancement by the clinically important drugs, the benzodiazepines and the barbiturates. All of these drugs modulate GABA-receptor regulated chloride channels at the cellular level assayed by electrophysiological or radioactive ion tracer techniques. Specific receptor sites for GABA, benzodiazepines, picrotoxin/convulsants, and barbiturates can be assayed in vitro by radioactive ligand binding. Mutual chloride-dependent allosteric interactions between the four receptor sites indicate that they are all coupled in the same membrane macromolecular complex. Indirect effects of barbiturates on the other three binding sites define a pharmacologically specific, stereospecific receptor. All of the activities can be solubilized in the mild detergent 3-[(3-cholamidopropyl)-dimethylammonio]propane sulfonate (CHAPS) and co-purify as a single protein complex.  相似文献   

17.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

18.
The serotonin1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins. They appear to be involved in various behavioural and cognitive functions. This paper reports an efficient strategy to solubilize 5-HT1A receptors from bovine hippocampal membranes using the zwitterionic detergent CHAPS which is mild and non-denaturing. Since high concentration of CHAPS has earlier been shown to induce dissociation and depletion of G-protein sub-units, a low (pre-micellar) concentration of CHAPS was used for solubilizing 5-HT1A receptors in the presence of NaCl followed by PEG precipitation. This results in solubilization of 5-HT1A receptors with a high degree of efficiency and gives rise to high affinity, functionally active G-protein-sensitive solubilized receptors. Optimal solubilization of the receptor from the native source with high ligand binding affinity and intact signal transduction components may constitute the first step in the molecular characterization of the 5-HT1A receptor in particular, and G-protein-coupled receptors in general.  相似文献   

19.
In unwashed brain membranes taurine produced an inhibition of [3H]flunitrazepam [( 3H]FNZ) binding with IC50 ranging between 31.5 and 11.9 microM; the IC20 varied between 18 and 26 nM. This inhibitory effect was of a mixed type, with a reduction in Bmax and an increase in KD. Various precursors and metabolites of taurine have a less inhibitory effect. Taurine also has little inhibitory effect (IC50 above 500 microM) on the binding of [3H]ethyl-beta-carboline-3-carboxylate. In extensively washed membranes, 10(-5) M taurine produces a 16-21% increase in the binding of [3H]FNZ while 10(-5) M gamma-aminobutyric acid (GABA) increases it between 31 and 42%. However, if 10(-5) M GABA plus 10(-5) M taurine is included in the assay there is a dramatic inhibitory effect. Taurine causes an inhibition of the GABAergic enhancement of [3H]FNZ binding with an IC50 between 7.3 and 7.8 microM. Binding experiments with [3H]taurine done under different conditions failed to detect a Na+-independent and specific [3H]taurine receptor. These results suggest that endogenous taurine, the second most abundant free amino acid in brain, may play an important modulatory role in the GABA-benzodiazepine receptor complex.  相似文献   

20.
D2 dopamine receptor from bovine striatum was solubilized in a form sensitive to guanine nucleotides, by means of a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). The presence of sodium ion markedly increased the solubilization yield. Treatment of the membranes with 10 mM CHAPS and 0.72 M NaCl solubilized 26% of the stereospecific [3H]spiperone binding sites in the original membrane preparations. The solubilized [3H]spiperone binding sites possessed characteristics of the D2 dopamine receptor: (a) localization of the site in the striatum but not in the cerebellum; (b) high affinity to nanomolar concentrations of [3H]spiperone; (c) displacement of [3H]spiperone binding by nanomolar concentrations of neuroleptics, but only by micromolar concentrations of dopamine and apomorphine; (d) equal activity of various dopamine agonists and antagonists in the soluble and membrane preparations. Guanine nucleotides decreased the affinity of the solubilized D2 dopamine receptor for dopamine agonists, but not for antagonists. The solubilized receptor complex was eluted in Sepharose CL-4B column chromatography as a large molecule, with a Stokes radius of approximately 90 A. These results indicate that the complex between the D2 dopamine receptor and GTP binding protein remains intact throughout the solubilization procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号