首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Michael Hickman 《Ecography》1978,1(4):337-350
Cooking Lake (113°02′W, 53°26′N), a well-mixed, shallow (mean depth (1.59 m), eutrophic lake in Alberta, Canada, is characterized by eutrophic chlorococcalean and cyanophycean phytoplankton associations, and little change in standing crop with increasing depth. Standing crop and primary productivity are low during the winter but pronounced spring and summer maxima occur. Mean yearly areal standing crop (ΔB) and primary productivity (ΔA) were 212.4 mg m?2 chlorophyll a and 301.8 mg C h?1 m?2 respectively. Annual productivity was estimated at 1322 g C m?2. The mean increase in the extinction coefficient (?) per unit increase in standing crop (B) was 0.03 In units m?1. High non-algal light attenuation (?q) occurred avenging 41 which prevented the ratio B/? from attaining more than 65% of the theoretical maximum except once when algal self-shading occurred. Close correlations existed between B (mg m?3 chlorophyll a) and A max (mg h?1 m?3) ΔA and ΔB, ΔA and B, Amax, and Amax/?, and ΔA and Io′, (W m?2). The depth of the euphotic zone (Zeu) varied between 0.5 and 1 25 m; the average relationship between zeu and E was Zeu= 3.74/?, and the mean standing Crop found in the euphotic zone represented 55.2% of the theoretical maximum, The high ?q, values made the model of Tailing (1957) inapplicable to Cooking Lake. The Q10 value for the lake was 2.2. The maximum rate of photosynthesis per unit of population per h. Ømax, (mg C sag chlorophyll a?1 h?1) was more closely related to temperature than irradiance and ma depressed by pH values greater than 9.1. Growth of the phytoplankton was not nutrient limited: instead irradiance and temperature were more important. Indirect evidence that free CO2 limited photosynthetic rates, is provided by the Ømax: pH relationship.  相似文献   

2.
Viruses play a key role in all marine ecosystems, and yet little is known of their distribution in Antarctic waters, especially in bathypelagic waters (>1000 m). In this study, the abundance and distribution of viruses and their potential hosts from the surface to the bottom of Prydz Bay, Antarctic, was investigated using flow cytometry. Viruses and autotrophs were abundant in nearshore and continental shelf waters, while heterotrophic bacteria and picoeukaryotes were abundant in offshore waters. Virus and bacteria abundances generally decreased with increasing depth but increased slightly just above the seafloor. Within the water column, maximum virus numbers coincided with the maximum values of chlorophyll a (when greater than 0.1 μg l?1), in the surface and subsurface (25 m). In the open ocean, however, virus abundance usually correlated with bacterial abundance at greater depths (50, 300 and 500 m) where the surface chlorophyll a concentration was lower than 0.1 μg l?1. Viral abundance was correlated with the host cell abundance, and this was different in different pelagic zones (bacteria and autotrophs (i.e., chlorophyll a concentration) in the epipelagic waters, picoeukaryotes and bacteria in mesopelagic waters and bacteria in bathypelagic waters). Principle component analysis and Pearson correlation analysis indicated that there was a close relationship between virus abundance and chlorophyll a, bacteria and nutrients (NO2 + NO3, phosphate and silicate), and picoeukaryote abundance was mainly correlated with water depth and salinity.  相似文献   

3.
Summary

An analysis of covariance performed on chlorophyll a distribution data from the Sundays River estuary identified five persistent water masses with significantly different chlorophyll a contents. These corresponded to different hydrodynamic regions within the estuary. The relationship between salinity and chlorophyll a was used to identify a transition zone between the low-salinity upper estuary and the brackish riverine inflow. Chlorophyll a concentrations ranged from <6 μg 1?1 near the mouth to >100 μg 1?1 in the middle and upper reaches. High variance of chlorophyll a data in this region was the result of temporal chlorophyll a fluctuations in two time scales. The first related to the daily ebb/tide and the second to the lunar spring/neap tidal cycle. Unlike its importance in larger and deeper estuaries, light played only a minor role in the horizontal distribution of chlorophyll a. The presence of a chlorophyll a maximum in the turbid low salinity region is explained in terms of the relatively constant photic depth/mixed depth ratio along the estuary and the high residence time of water in this region.  相似文献   

4.
Vertical distribution of phytoplankton and the formation of deep chlorophyll maximum (DCM) in the metalimnion of a small stratified and partly meromictic temperate lake was studied in 1999 and 2000. During summer DCM usually occurred on the borderline of H2S and oxygen-containing waters. At the depths where the bacteriochlorophyll (Bchl) maxima were observed, the sulphide concentration was usually relatively low compared to the bottom layers, where its concentration reached as high as possible saturation level. In April 2000, DCM was formed at the depth of 3.5 m, and lowered thereafter slowly to 6.5 m by October. The concentration of Bchl d reached the highest values (over 1000 μg l−1) just before the water column was mixed up in autumn. In December and April Bchl d was detectable only near the bottom of the lake. The concentration of chlorophyll a yielded by the spectrophotometric phaeopigment corrected method and by HPLC (high pressure liquid chromatography), fit rather well in the upper layers. In deeper water layers chlorophyll a concentration (Chl a) measured by spectrophotometry was overestimated about 47 times if compared to HPLC values because of the high Bchl d in that layer. In most cases vertical profiles of primary production (PP) did not coincide with the vertical distribution of the pigment content; the maximum values of PP were found in the epilimnion. In some cases PP had notably high values also at the depth of DCM. In the upper layers Chl a usually did not exceeded 20 μg l−1 in spring and 10 μg l−1 in summer. The moderately high Chl a in the epilimnion in spring was significantly reduced after the formation of thermocline most probably because of the establishment of the nutrient limitation in epilimnion. Decreasing Chl a concentration in the epilimnion led to increased water transparency and better light conditions for photosynthetic bacteria in metalimnion.  相似文献   

5.
1. Oligotrophic Lake Waikaremoana, New Zealand, is used for hydroelectric power generation and the lake levels are manipulated within an operating range of 3 m. There was concern that rapidly changing water levels adversely affected the littoral zone by decreasing light availability in two ways: local turbidity caused by shoreline erosion at low water levels; and decreased light penetration to the deep littoral zone caused by high water levels in summer. 2. The littoral zone was dominated by native aquatic plants with vascular species to 6 m and a characean meadow below this to 16 m. The biomass and heights of the communities in the depth zone 0–6 m were reduced at a site exposed to wave action relative to those at a sheltered site. However, the community structure below 6 m was similar at exposed and sheltered sites. The lower boundary of the littoral zone was sharply delimited at 16 m and this bottom boundary remained constant throughout the year despite large seasonal changes in solar radiation and the 3 m variation in lake level. 3. There was evidence that the deep-water community consisting of Chara corallina had adapted physiologically to low-light conditions. Net light saturated photosynthesis (CO2 exchange) per unit chlorophyll a (Chl a) was reduced to 1.7 μg C (μg Chl a)?1 h?1 at the lower boundary, half of that recorded at 5 m. The concentration of Chi a per gram of biomass (dry weight), was considerably greater at the lower boundary than higher in the profile [c. 7 mg Chl a (g dry wt)?1 at 16 m vs. 4 mg Chl a (g dry wt)?1 at 5 m]. Chl b also increased with depth and there was no change in the ratio of Chl a and Chl b with increasing depth. The saturation light intensity (Ik) of the community at the lower boundary was only 78 μmol photons m?2 s?1. Photosynthetic parameters (Ik and α) as well as the Chl a content remained relatively constant throughout the seasonal and short-term changes in radiation. 4. The photosynthetic characteristics of the littoral community were therefore not greatly affected by the lake level change caused by the present hydroelectric operations. However, the sharpness of the lower boundary and its extreme shade characteristics imply that the deep-water community would be sensitive to any further changes in underwater light availability.  相似文献   

6.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

7.
Abstract

A regeneration protocol from leaf explants of Grindelia robusta Nutt. was developed. The combination of 0.5 mg l?1 IBA plus 0.5 mg l?1 or 1 mg l?1 BA added to Murashige-Skoog (MS) medium resulted in the best callus induction frequency; the combination of 0.4 or 0.9 mg l?1 BA plus 1.2 mg l?1 GA3 resulted in the best shoot regeneration. Rooting was successful on MS medium supplemented with 0.5 mg l?1 IBA. Hardening of G. robusta plants was accomplished in 30 days with 85% survival rate.  相似文献   

8.
SUMMARY. 1. Phytoplankton density (organisms ml?1), standing crop (chlorophyll a mg m?2) and primary productivity (mg C m?2 d?1) were measured during years 2 (1976) to 5 (1979) after impoundment on West Point Lake. 2. West Point waters had low alkalinity (<0.4 meq 1–1) and low conductivity (<75 μs cm?1 at 20°C) but N and P concentrations typically exceeded those considered apt to cause nuisance blooms of algae. Abiogenic turbidity was normally higher in the upstream areas of the reservoir than in the downstream areas and was several times higher in winter-spring than in summer-autumn due to increased rains and runoff. 3. Primary productivity varied greatly both temporally and spatially. A mean value of 684 mg C m?2 d?1 was well within the mesotrophic range and did not approach the highly eutrophic state predicted. Productivity increased from a low of 550 mg C m?2 d?1 in 1976 to high of 763 mg Cm?2d?1 in 1979. 4. Observed variation in both chlorophyll a and primary productivity was more predictable in the cool (December-March) than in the warm (June-September) season and with plant nutrient data than without it. With plant nutrient data in the cool season 84% and 86% of the variation (R2) in chlorophyll a and productivity, respectively, were accounted for by the regression equations. During the warm season, with plant nutrient data, regression equations accounted for 44% and 68% of the variation in chlorophyll a and productivity, respectively. Higher R2 values in cool seasons resulted from the overriding influence of abiogenic turbidity on phytoplankton communities.  相似文献   

9.
Phyto/zooplankton composition, chlorophyll a, and some water quality parameters were investigated in a spring-originated pond in Central Anatolia between February 2001 and January 2002. Water temperature, pH, dissolved oxygen, Secchi depth, total and calcium hardness, nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, total phosphorus, and soluble reactive phosphorus levels were analyzed. A total of 49 species belonging to Bacillariophyceae, Chlorophyceae, Cyanophyceae, Cryptophyceae, and Dinophyceae were identified. The highest phytoplankton abundance was found in August, whereas the lowest was determined in January. Phytoplankton abundance increased from February to August and declined in the following months. The Bacillariophyceae were dominant in the phytoplankton community. A total of 21 species of Rotifera, 2 species of Cladocera, and 1 genus of Copepoda were found. The zooplankton community was dominated by Rotifera. The highest abundance of zooplankton was recorded in July and the lowest value in November. The annual mean concentration of chlorophyll a was measured as 1.90 μg l−1. In spite of these eutrophic levels (mean values of total phosphorus and nitrate-nitrogen: 0.069 mg P l−1 and 0.68 mg N l−1), phytoplankton cannot grow satisfactorily because of the short water retention time (0.6 day−1). The shallowness of the pond together with the low phytoplankton biomass and the high concentrations of nutrients are discussed.  相似文献   

10.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

11.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

12.
1. Lough Neagh is a large eutrophic lake covering 387 km2 with a mean depth of 8.9 m. It is an important natural resource, being the largest single source of potable water for Belfast, Northern Ireland. 2. This report examines the causes of the year-to-year variation in the April–June (spring) algal biomass, measured as chlorophyll a, for the period 1974–92. 3. The spring chlorophyll a declined following the introduction of a phosphorus (P) reduction programme at major sewage treatment works in 1981. However, since 1990 the chlorophyll a concentrations in the spring have increased. 4. Time series methodology was employed to develop a model which explained 76% of the annual variation in spring chlorophyll a concentrations. 5. The independent variables used in the multiple regression model were the previous year’s spring chlorophyll a concentration, soluble reactive P inputs for April–June and the particulate P concentration in the Lough during the previous summer.  相似文献   

13.
SUMMARY. 1. Periphyton chlorophyll a and ash free dry weight (AFDW) were monitored in nine rivers to examine the relative importance of flows and nutrients for regulating periphyton biomass in gravel bed rivers. 2. Mean annual flows in the rivers ranged from 0.94 to 169 m3 s?1, mean dissolved reactive phophorus (DRP) from 1.3 to 68 μ g 1?1, periphytic chlorophyll a from 4.6 to 73 mg m ?2. and AFDW from 2.8 to 16 g m?2. 3. For eight of the nine rivers NH4-N. DRP, total Kjeldahl nitrogen, total phosphorus and total suspended solids were correlated (P<0.01) with flow, and for seven rivers conductivity was inversely correlated (P<0.05) with flow. 4. There was a hyperbolic relationship between flows and biomass, with chlorophyll a >100 mg m ?2 and AFDW >20 g m?2 occurring most frequently in flows of <20 m3 s?1. 5. Floods prevented the development of medium term (i.e. up to 2 months) maxima in biomass in five of the rivers, but maxima occurred over summer-autumn and winter-spring in the three rivers where floods were absent. 6. Chlorophyll a biomass was more resistant to flooding than AFDW. Only 5993 of the forty-six recorded floods caused chlorophyll a scouring, whereas 74% of the floods caused AFDW scouring. The efficiency of scour was more influenced by the pre-flood biomass than the magnitude of the event. 7. Biomass maxima were significantly correlated (P<0.01) with mean DRP concentration during the accrual period. Overall, up to 53% of the mean annual biomass difference between rivers was explained by the mean annual DRP concentrations. However, the high correlations between nutrient concentrations and flow indicated that the nutrient data were also carrying hydrological information and that simple causal relationships between nutrients and biomass are difficult to establish in rivers. 8. It is concluded that hydrological factors contribute at least equally with nutrients to the differences in periphyton biomass between the gravel-bed study rivers. They combined to explain up to 63.3% of the variance in biomass, compared with 57.6% for nutrients. It is recommended that periphyton data from gravel-bed rivers should always be viewed within the context of the flow history of the site, and not just as a function of nutrient concentrations.  相似文献   

14.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

15.
Huang L  Lu D  Zhang P  Diao J  Zhou Z 《Chirality》2012,24(8):610-614
Enantioselectivity in ecotoxicity of chiral pesticides in the aquatic environment has been a subject of growing interest. In this study, the toxicological impacts of hexaconazole enantiomers were investigated with freshwater algae Scenedesmus obliquus. After 96 h of exposure, the EC50 values for rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole were 0.178, 0.355, and 0.065 mg l?1, respectively. Therefore, the acute toxicities of hexaconazole enantiomers were enantioselective. In addition, the different toxic effects were evaluated when S. obliquus were exposed to 0.2, 0.5, and 1.0 mg l?1 of rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole during 96 h, respectively. The chlorophyll a and chlorophyll b contents of S. obliquus treated by (?)‐hexaconazole were lower than those exposed to (+)‐hexaconazole, whereas the malondialdehyde contents of S. obliquus treated by (?)‐form were higher than those exposed to (+)‐form at higher concentrations. In general, catalase activities were significantly upregulated by exposure to (?)‐enantiomer than (+)‐enantiomer at all three concentrations. However, superoxide dismutase activities exposed to (?)‐hexaconazole were lower than that exposed to (+)‐hexaconazole at 0.2 mg l?1 and 0.5 mg l?1. On the basis of these data, the acute toxicity and toxic effects of hexaconazole against S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk assessment. Chirality 24:610–614, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
1. The effect of benthivorous bream and carp on sediment resuspension and the concentrations of nutrients and chlorophyll a were studied in sixteen experimental ponds (mean depth 1m, mean area 0.1 ha, sandy clay/clay sediment), stocked with bream or carp at densities varying from 0 to 500 kg ha?1. Planktivorous perch (Perca fluviatilis L.) were added to some ponds to suppress zooplankton. 2. Suspended sediment concentrations increased linearly with biomass of benthivorous fish. Bream caused an increase of 46 g sediment m?2 day?1 per 100kg bream ha?1 and a reduction of 0.38m?1 in reciprocal Secchi disc depth, corresponding to an increase in the extinction coefficient of 0.34m?1. 3. No relationship was found between size of fish and amount of resuspension, but the effect of bream was twice as great as that of carp. Benthivorous feeding was reduced in May because alternative food (zooplankton) was available. 4. Assuming a linear relationship, chlorophyll a level increased by 9.0 μgI?1, total P by 0.03mgl?1 and Kjeldahl-N by 0.48mgl?1 per 100kg bream ha?1. Silicate, chlorophyll a, total P and total N were all positively correlated with fish biomass, but orthophosphate showed no correlation.  相似文献   

17.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

18.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

19.
Using time-course, natural-light incubations, we assessed the rate of carbon uptake at a range of light intensities, the effect of supplemental additions of nitrogen (as NH4+ or urea) on light and dark carbon uptake, and the rates of uptake of NH4+ and urea by phytoplankton from Vineyard Sound, Massachusetts from February through August 1982. During the winter, photoinhibition was severe, becoming manifested shortly after the start of an incubation, whereas during the summer, there was little to no evidence of photoinhibition during the first several hours after the start of an incubation. At light levels which were neither photoinhibiting nor light limiting, rates of carbon uptake normalized per liter were high and approximately equal during winter and summer (22–23 μg C·l?1 · h?1), and low during spring (<10 μgC·l?1· h?1). In contrast, on a chlorophyll a basis, rates of carbon fixation were as high during spring (15–20μg C·μg Chl a?1·h?1), when concentrations of chlorophyll a were at the yearly minimum (<0.5 μg · l?1) as during the summer, when chlorophyll a concentrations were substantially higher (0.8–1.3 μg · l?1). Highest rates of NH4+ and urea uptake were observed during summer, and at no time of the year was there evidence for severe nitrogen deficiency, although moderate nitrogen nutritional stress was apparent during the summer months.  相似文献   

20.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号